Тепловычислители СПТ941 (мод. 941.10, 941.11) Руководство по эксплуатации

Содержание

В	ведение	4
1	Назначение	4
2	Технические данные	
	Эксплуатационные характеристики	4
	Входные сигналы и диапазоны	
	Электропитание	5
	Основные функциональные возможности	5
	Диапазоны показаний	5
	Метрологические характеристики	6
3	Сведения о конструкции	
4	Схемы потребления	7
5	Структура данных	9
	Разделы данных	9
	Раздел ПРИБОР	11
	Раздел НАСТР (настройки)	13
	Раздел справка (?)	18
6	Диагностика	18
7	Контроль параметров	19
	Контроль расхода	19
	Контроль температуры	20
	Контроль разности "часовых масс"	
	Контроль "часового тепла"	21
	Контроль сигнала на дискретном входе	21
	Контроль перегрузки по цепям питания датчиков	22
	Контроль батареи	22
8	Итоговые отчеты	
	Типы отчетов	22
	Вывод на принтер	22
	Вывод на компьютер	22
	Комбинированный вывод	22
9	Безопасность	22
1(О Подготовка к работе	23
	Общие указания	23
	Монтаж электрических цепей	
	Монтаж тепловычислителя	
	Подключение модема	
	Ввод в эксплуатацию	
	Замена батареи	
1	Гранспортирование и хранение	26

Введение

Настоящее руководство по эксплуатации предназначено для специалистов, осуществляющих монтаж и обслуживание тепловычислителей СПТ941 (мод. 941.10, 941.11). Руководство содержит сведения о технических характеристиках, конструкции и работе приборов.

Пример записи тепловычислителя в документации другой продукции:

"Тепловычислитель СПТ941.10 ТУ 4217-050-23041473-2005".

1 Назначение

Тепловычислители предназначены для измерения и учета тепловой энергии и количества теплоносителя в закрытых и открытых водяных системах теплоснабжения.

Тепловычислители рассчитаны для работы в составе теплосчетчиков, обслуживающих один теплообменный контур. Совместно с тепловычислителями применяются:

- преобразователи объема, имеющие числоимпульсный выходной сигнал с частотой следования импульсов 0-18 или 0-1000 Гц;
- преобразователи температуры с R_0 =100 Ом и W_{100} ={1,385; 1,391; 1,428}.

Электропитание тепловычислителей осуществляется от литиевой батареи; имеется возможность подключения внешнего источника постоянного тока. Датчики объема, работающие при напряжении питания 3,2-3,6 В, могут получать его непосредственно от тепловычислителя. Тепловычислитель снабжен дискретным входом для фиксации внешнего события.

Классификационные параметры моделей тепловычислителей приведены в таблице 1.1.

Таблица 1.1 – Классификационные параметры моделей

Количество подключаемых Модель датчиков			Дискрет-	
	объема	температуры	объема	ныи вход
941.10	3	2	+	+
941.11	3	2	_	+

2 Технические данные

Эксплуатационные характеристики

Условия эксплуатации:

- температура окружающего воздуха от минус 10 до 50 °C;
- относительная влажность до 95 % при 35 °C;
- атмосферное давление от 84 до 106,7 кПа;
- вибрация амплитуда 0,35 мм, частота 5-35 Гц.

Механические параметры:

- габаритные размеры 180×194×64 мм;
- масса не более 0,76 кг;
- степень защиты от пыли и воды IP54.

Параметры электропитания:

- литиевая батарея 3,6 В;
- внешний источник постоянного тока $U_{\text{ном}}=12~B, I_{\text{пот}}<15~\text{мA}.$

Показатели надежности:

- средняя наработка на отказ 75000 ч;
- средний срок службы 12 лет.

Входные сигналы и диапазоны

Измерительная информация поступает на тепловычислитель от датчиков в виде электрических сигналов, перечень которых составляют:

- три числоимпульсных сигнала, соответствующие объему, каждый из которых может быть низкочастотным с диапазоном изменения 0-18 Гц или высокочастотным с диапазоном 0-1000 Гц. Низкочастотные сигналы формируются дискретным изменением сопротивления (замыканияразмыкания) выходной цепи датчика объема. Сопротивление цепи в состоянии "замкнуто" должно быть менее 1 кОм, в состоянии "разомкнуто" – более 500 кОм. Длительность импульса (состояние "замкнуто") должна составлять не менее 0,5 мс, паузы (состояние "разомкнуто") – не менее 12,5 мс. Высокочастотные сигналы формируются дискретным изменением напряжения выходной цепи датчика. Выходное сопротивление цепи не должно превышать 1 кОм. Низкий уровень сигнала (импульс) должен быть не более 0,5 В, высокий уровень (пауза) – не менее 3 и не более 5 В. Длительности импульса и паузы должны быть не менее 0,5 мс;

- два сигнала сопротивления, соответствующие температуре от 0 до 175 °C.

Кроме перечисленных, тепловычислитель воспринимает один дискретный сигнал, соответствующий внешнему событию (отключение питания датчиков, срабатывание охранной сигнализации и пр). Этот сигнал формируется внешним устройством в виде дискретного изменения напряжения. Высокий уровень сигнала должен лежать в диапазоне от 5 до 24 В, низкий уровень не должен превышать 1,0 В; входное сопротивление тепловычислителя по дискретному входу составляет 4,7 кОм.

Электропитание

Электропитание тепловычислителя осуществляется от литиевой батареи с напряжением 3,6 В и, для экономии ее ресурса, от внешнего источника постоянного тока. Допускаемый диапазон напряжения внешнего питания 9-24 В; рекомендуется использовать источник с напряжением 12 В.

Разряд батареи диагностируется как нештатная ситуация НС00; в течение месяца после ее возникновения следует заменить батарею с целью предотвращения нарушений в работе тепловычислителя.

При наличии нештатной ситуации HC00 цикл опроса датчиков температуры (период измерений, или ПИ) принудительно устанавливается максимальным, равным 1024 с.

Тепловычислитель автоматически выбирает режим питания. При наличии внешнего питания принудительно устанавливается минимальный ПИ, равный 5 с.

Основные функциональные возможности

При работе в составе теплосчетчика тепловычислитель обеспечивает обслуживание одного теплообменного контура, обеспечивая при этом:

- измерение объема, объемного расхода, температуры;
- вычисление количества тепловой энергии, массы и средних значений температуры;
- ввод настроечных параметров и показания текущих, архивных и настроечных параметров;
- ведение календаря, времени суток и учет времени работы;
- защиту данных от несанкционированного изменения.

Часовые, суточные и месячные значения количества тепловой энергии, массы, объема, средней температуры и средней разности температур архивируются. Часовой архив содержит 1080 записей для каждого из перечисленных параметров, суточный архив – 365 записей и месячный – 48 записей.

В специальных архивах содержится информация об изменениях настроечных параметров и о возникновении и устранении нештатных ситуаций. Архив изменений и архив нештатных ситуаций содержат по сто записей каждый.

Архивы размещаются в энергонезависимой памяти и могут сохраняться в течение всего срока службы тепловычислителя даже при отсутствии питания.

Коммуникация с внешними устройствами (компьютер, модем и пр.) осуществляется через IEC1107- и RS232-совместимые порты.

При совместной работе тепловычислителя с GSM-модемами обеспечивается передача данных по технологии GPRS или CSD (HSCSD).

В тепловычислителе предусмотрены механизмы авторизации и шифрования, позволяющие ограничить доступ через RS232-совместимый порт.

Диапазоны показаний

Пределы диапазонов показаний составляют:

- 0-175 °C температура;
- 0-175 °C разность температур;
- $0-99999 \text{ м}^3/\text{ч} \text{расход};$
- 0-9999999 объем [м³], масса [т], тепловая энергия [Гкал, ГДж, MWh];
- 0-99999999 ч время.

Метрологические характеристики

Погрешность в условиях эксплуатации не превышает:

```
\pm 0.01 \% – при измерении расхода (относительная);
```

 ± 0.1 °C — при измерении температуры (абсолютная);

 ± 0.03 °C – при измерении разности температур (абсолютная);

 $\pm 0.02 \%$ — при вычислении количества тепловой энергии и массы (относительная);

 $\pm\,0,\!01~\%$ — при вычислении средних значений температуры и разности температур (относитель-

ная);

 $\pm 0.01 \%$ – при вычислении объема (относительная);

 $\pm 0.01 \%$ – при измерении времени (относительная).

3 Сведения о конструкции

Корпус тепловычислителя выполнен из пластмассы, не поддерживающей горение. Стыковочные швы корпуса снабжены уплотнителями, что обеспечивает высокую степень защиты от проникновения пыли и воды. Внутри корпуса установлена печатная плата, на которой размещены все электронные компоненты, клавиатура, табло и оптический порт.

Литиевая батарея расположена в монтажном отсеке и удерживается специальной скобой. Такое расположение позволяет производить замену батарей непосредственно на месте установки прибора.

На рисунках 3.1-3.3 показано расположение органов взаимодействия с оператором, соединителей для подключения внешних цепей, маркировки, пломб изготовителя и поверителя, а также даны установочные размеры.

Тепловычислитель крепится на ровной вертикальной плоскости с помощью четырех винтов. Корпус навешивается на два винта, при этом их головки фиксируются в пазах петель, расположенных в верхних углах задней стенки, и прижимается двумя винтами через отверстия в нижних углах. Монтажный отсек закрывается крышкой, в которой установлены кабельные вводы, обеспечивающие механическое крепление кабелей внешних цепей. Подключение цепей выполняется с помощью штекеров, снабженных винтовыми зажимами для соединения с проводниками кабелей. Сами штекеры фиксируются в гнездах, установленных на печатной плате. Конструкция крышки монтажного отсека позволяет не производить полный демонтаж электрических соединений, когда необходимо временно снять тепловычислитель с эксплуатации – достаточно лишь расчленить штекерные соединители.

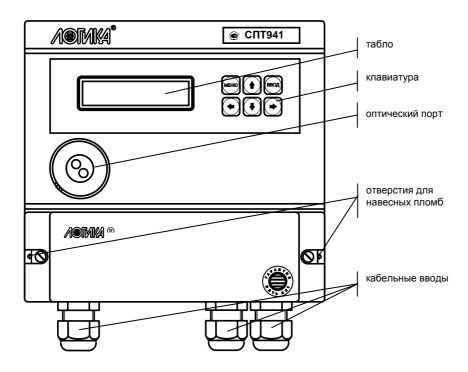


Рисунок 3.1 – Вид спереди

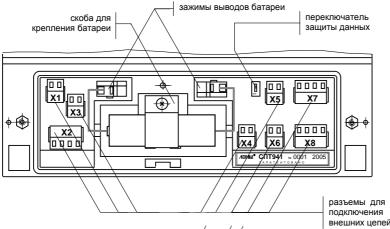


Рисунок 3.2 – Монтажный отсек тепловычислителя СПТ941.11

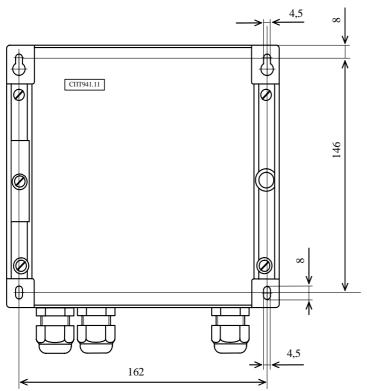


Рисунок 3.3 – Вид сзади. Установочные размеры

4 Схемы потребления

Понятие схема потребления (СП) объединяет особенности конкретного узла учета: конфигурацию трубопроводов, состав и размещение основного оборудования и средств измерений. Номер схемы – обязательный настроечный параметр. При подготовке базы настроечных данных он должен быть задан в первую очередь.

Схемы потребления и соответствующие им расчетные формулы приведены в таблице 4.1. Здесь и далее приняты следующие обозначения:

ТС1, ТС2 – преобразователи температуры;

ВС1, ВС2, ВС3 – преобразователи объема;

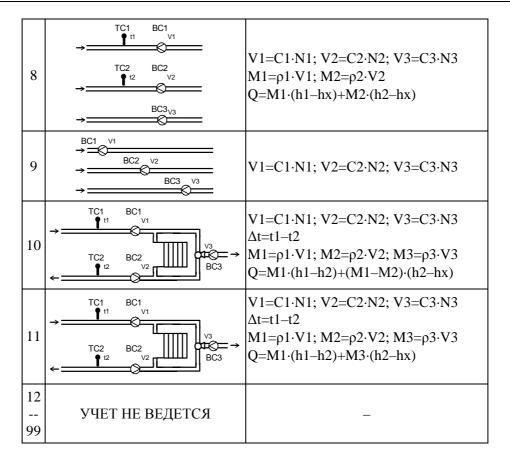
Q – тепловая энергия;

V1, V2, V3 - объем;

М1, М2, М3 – масса;

 $t1, t2, \Delta t$ – температура и разность температур;

С1, С2, С3 – цена импульса;


N1, N2, N3 – количество импульсов;

ρ1, ρ2, ρ3 - плотность;

h1, h2, h3, hx – энтальпия.

Таблица 4.1 – Схемы потребления

№	Схема потребления	Расчетные формулы
0	TC1 BC1 V1 BC3 _{V3} →	V1=C1·N1; V2=C2·N2; V3=C3·N3 Δt=t1-t2 M1=ρ1·V1; M2=ρ2·V2; M3=M1-M2 Q=M1·(h1-h2)+ M3·(h2-hx)
1	→ TC1 BC1 V1 TC2 BC2 V2 V3 BC3	$V1=C1\cdot N1;\ V2=C2\cdot N2;\ V3=C3\cdot N3$ $\Delta t=t1-t2$ $M1=\rho 1\cdot V1;\ M2=\rho 2\cdot V2$ $M3=M1-M2+\rho 2\cdot V3$ $Q=M1\cdot (h1-h2)+M3\cdot (h2-hx)$
2	→ TC1 ↑ t1 TC2 BC2 V2 BC3 V3 →	V2=C2·N2; V3=C3·N3 Δt=t1-t2 M2=ρ2·V2; M1=M2; M3=ρ2·V3 Q=M1·(h1-h2)+M3·(h2-hx)
3	TC1 BC1 V1 TC2 BC2 BC3 _{V3}	V1=C1·N1; V2=C2·N2; V3=C3·N3 Δt=t1-t2 M1=ρ1·V1; M2=ρ2·V2 Q=M1·(h1-h2)
4	→ TC1 BC1 ↑ 11 V1 TC2 BC2 → 12 V2 BC3 _{V3} → BC3 _{V3}	V1=C1·N1; V2=C2·N2; V3=C3·N3 Δt=t1-t2 M1=ρ1·V1; M2=ρ2·V2 Q=M2·(h1-h2)
5	→ TC1 BC1 ↑ 11 V1 TC2 → P 12 BC3 _{V3} → BC3 _{V3}	V1=C1·N1; V3=C3·N3 Δt=t1-t2 M1=ρ1·V1; M2=M1 Q=M1·(h1-h2)
6		V2=C2·N2; V3=C3·N3 Δt=t1-t2 M2=ρ2·V2; M1=M2 Q=M2·(h1-h2)
7	→ TC1 BC1 V1	V1=C1·N1; M1=ρ1·V1 Q=M1·(h1-hx)

Приведенные схемы потребления являются базовыми – состав и расположение их элементов могут быть в определенных пределах изменены. Основное условие для применения той или иной схемы – справедливость приведенных расчетных формул.

Так, на рисунке 4.1 показано использование схемы потребления 0 в измененной топологии. Датчик ВСЗ установлен для контроля водоразбора по отдельной трубе.

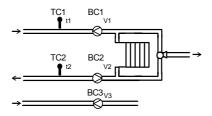


Рисунок 4.1 – Пример модификации схемы потребления СП=0

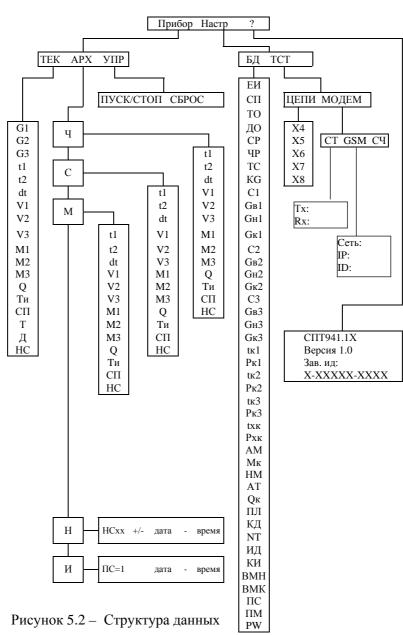
5 Структура данных

Разделы данных

Все данные, так или иначе характеризующие состояние измеряемой среды и отражающие процесс учета, разбиты на разделы: ПРИБОР и НАСТР (настройки), навигация по которым осуществляется с помощью многоуровневой системы меню.

Главное меню содержит наименования разделов данных, как показано на рисунке 5.1. На рисунке 5.2 представлена полная структура данных тепловычислителя.

Когда тепловычислитель работает на автономном питании на табло размещается стилизованное изображение батареи. Для экономии ее ресурса табло гасится, если в течение примерно двух минут не выполнялись никакие действия с клавиатурой. При питании прибора от внешнего источника, табло включено постоянно, а значок батареи погашен.


Перемещение курсора вдоль строки для выбора какого-либо пункта меню выполняется с помощью клавиш \Leftrightarrow и \Leftrightarrow , вход в выбранный пункт – по клавише \diamondsuit . Возврат на предыдущий уровень меню осуществляется по нажатию клавиши МЕНЮ, для возврата в главное меню необходимо длительное, более одной секунды, нажатие на клавишу МЕНЮ.

В настоящем руководстве не рассматриваются детально все возможные приемы общения с тепловычислителем; сведений, приводимых далее на рисунках, достаточно, чтобы, не имея практических навыков, сразу начать работу с ним. На случай какой-либо непонятной ситуации существует простой прием: нажимать клавишу МЕНЮ – это ничем не грозит – столько раз, сколько нужно, чтобы добраться до знакомого изображения на табло и с этого места продолжить выполнение процедуры.

Детальный состав каждого раздела данных рассматривается далее на уровне описания структуры каждого из них.

Рисунок 5.1 – Главное меню

Раздел ПРИБОР

Текущие параметры (ПРИБОР-ТЕК)

К текущим (ТЕК) отнесены параметры, значения которых меняются во времени, а также активные, имеющие место на данный момент, нештатные ситуации. Список текущих параметров доступен только для просмотра. Ниже приведен полный список параметров, хотя некоторые их них не используются в расчетах и не показываются при отсутствии соответствующего параметра в используемой схеме теплопотребления.

- **G1.** Объемный расход по трубопроводам 1, 2 и 3. Значения только те-
- **G2.** кущие, в том числе и при останове счета. Тепловычислитель осу-
- **G3** ществляет контроль измеренных значений расходов согласно алгоритмам, изложенным в седьмой главе настоящего руководства.
- **t1**, Температура по трубопроводам 1, 2. Значения только текущие, в
- **t2** том числе и при останове счета. Значения не используются в расчетах, если они выходят за пределы диапазона 0-176 °C.
- **dt** Разность температур. Значение не используется в расчетах, если текущие значения t1 и t2 выходят за пределы диапазона 0-176 °C.
- **V1**, Объем по трубопроводам 1, 2 и 3 (тотальные значения). Измеряет-
- **V2.** ся с нарастающим итогом за время счета.

V3

- **М1**, Масса по трубопроводам 1, 2 и 3 (тотальные значения). Вычисля-
- М2. ется с нарастающим итогом за время счета.

M3

- **Q** Количество тепловой энергии (тотальные значения). Вычисляется с нарастающим итогом за время счета.
- Ти Время счета (тотальные значения).
- СП Номер схемы потребления.
- **НС** Номера активных действующих на текущий момент нештатных ситуаций. Подробно они рассматриваются в разделе 6.

Архивы (ПРИБОР-АРХ)

Интервальные архивы (ПРИБОР-АРХ-Ч, ПРИБОР-АРХ-С, ПРИБОР-АРХ-М)

Интервальные архивы – это списки значений параметров, зафиксированных в определенные моменты времени. В тепловычислителе формируются три списка интервальных архивов: часовой (Ч), суточный (С) и месячный (М).

Номенклатура параметров в каждой группе зависит от схемы потребления.

Значения параметров в архивах определяются на часовом, суточном и месячном интервалах архивирования. Для параметров, вычисляемых с нарастающим итогом, – времени счета (Ти), тепловой энергии (Q), объемов (V1, V2, V3) и масс (М1, М2, М3) – это приращения их значений на упомянутых интервалах, для измеряемых параметров – температур t1 и t2 – их средневзвешенные по объему значения, вычисленные с учетом констант. В случае, когда измеренное значение объема равно нулю, в архивы будут положены последние из измеренных на интервале архивирования значения температур t1 и t2.

Кроме параметров, имеющих количественное выражение, в интервальных архивах содержится информация о наличии нештатных ситуаций. Если на интервале архивирования имела место, хотя бы на некоторое время, нештатная ситуация, ее номер заносится в архив, причем делается это однократно, не зависимо от того сколько раз она появлялась.

Интервальные архивы различаются объемами: для каждого параметра часовой архив содержит 1080 архивных записей, суточный – 365 и месячный – 48.

Начало архивирования для всех архивов синхронизировано с моментом пуска счета, а создание

архивных записей за истекший интервал архивирования – с окончанием этого интервала. Очевидно, что окончание каждого часового интервала совпадает с окончанием каждого часа (по часам тепловычислителя). Время окончания суточных и месячных интервалов – расчетный час (ЧР) – задается в базе настроечных данных. Окончание месячных интервалов определяется, кроме расчетного часа, еще и расчетными сутками (СР), которые также задаются в базе данных.

После останова счета архивирование прекращается. При последующем пуске счета процесс архивирования возобновляется и протекает по описанным выше правилам. Очистить интервальные архивы можно с помощью команды сброса, при этом автоматически выполняются останов счета и безвозвратное уничтожение всех архивных записей. Пустые архивы датируются "31-12-99 00:00".

Естественный порядок ведения архивов изменяется при переводе календаря или часов тепловычислителя. При переводе "в прошлое" очередная запись в архив будет сформирована лишь тогда, когда календарная дата "по новому стилю" совпадет с очередной – относительно последней, имеющейся "по старому стилю", датой архивирования. Эта очередная запись будет включать значения архивируемого параметра за все обусловленные смещением календаря пропущенные интервалы. В случае перевода календаря или часов "в будущее" архивные записи, соответствующие скачку во времени, не несут информации и имеют пометку "н/д" (нет данных). Описанные эффекты возникают также при автоматическом переводе часов тепловычислителя на летнее время и обратно.

В часовом архиве записи датируются по началу очередного часа. Например, данные за интервал с 0 до 1 часа 15 мая 2010 года будут датированы как 15-05-10 01:00, за интервал с 23 до 24 часов — как 16-05-10 00:00.

В суточном архиве датирование записей осуществляется с учетом расчетного часа (ЧР), заданного в базе настроечных данных. При значении расчетного часа от 0 до 11 записи датируются предыдущими сутками, при значении от 12 до 23 — текущими. Так, данные за интервал с 0 часов 1 мая по 0 часов 2 мая 2010 года (ЧР=0) будут датированы как 01-05-10, за интервал с 20 часов 1 мая по 20 часов 2 мая (ЧР=20) — как 02-05-10.

Записи в месячном архиве датируются с учетом расчетных суток (CP), также заданных в базе настроечных данных. При значении расчетных суток от 1 до 14, записи датируются предыдущим месяцем, при значении от 15 до последних суток месяца – текущим. Например, данные за интервал с 1 мая по 1 июня 2010 года (CP=1) будут датированы как 05-10, за интервал с 25 мая по 25 июня (CP=25) – как 06-10.

Тепловычислитель позволяет просматривать интервальные архивы на табло двумя способами. Вопервых, можно "пролистывать" список архивных параметров за выбранный интервал. Другой способ – просмотр одного параметра, при изменении даты (времени).

Архив изменений (ПРИБОР-АРХ-И)

В архиве изменений сохраняется информация об изменениях, произведенных в настроечных параметрах прибора. В архив попадают все изменения, независимо от того, в каком положении находился переключатель защиты. Объем архива – 100 последних изменений.

Каждая запись архива содержит обозначение параметра, присвоенное значение и метку "датавремя", когда произошло изменение.

Архив НС (ПРИБОР-АРХ-Н)

В этот архив попадают данные о возникновении и снятии нештатных ситуаций. Объем архива составляет 100 последних событий.

Каждая запись в архиве HC содержит номер нештатной ситуации, признак возникновения/снятия нештатной ситуации ("+" или "-", соответственно), а также метку с датой и временем произошедшего события. Просмотр архива HC осуществляется аналогично просмотру архива изменений.

Команды управления (ПРИБОР-УПР)

ПУСК, СТОП

При выполнении команды ПУСК включаются все тотальные счетчики (тепловой энергии, массы, объема); начинается архивирование параметров. Соответственно, при выполнении команды СТОП все тотальные счетчики останавливаются и их значения замораживаются, прекращается архивирование вплоть до выполнения команды ПУСК.

СБРОС Выполнение этой команды приводит к обнулению всех то-

тальных счетчиков, происходит также очистка всех архивов. База данных при этом остается неизменной.

ОПТО Команда активизирует оптический порт прибора для обмена данными с переносным компьютером или считывающим устройством. Порт RS-232 прибора при этом блокируется до окончания сеанса связи, после чего он вновь становится активным. Если в течение двух минут связь по оптическому интерфейсу не была установлена, действие команды автоматически отменяется.

ОТЧ, Команды группы ПЕЧ дополняют функции автоматической печати – они позволяют выполнить повтор печати отчетов (ОТЧ) и очистить очередь печати (ОЧС).

Раздел НАСТР (настройки)

База настроечных данных (НАСТР-БД)

- **ЕИ** Единицы измерений (0; 1; 2). $0 [\Gamma \text{кал и кгс/см}^2]$; $1 [\Gamma \text{Дж и M}\Pi \text{a}]$; 2 [MWh и бар].
- СП Номер схемы потребления (0...99). Схему выбирают, руководствуясь разделом 4 настоящего руководства. Этот параметр необходимо задать до назначения остальных параметров по вводу, так как номенклатура параметров БД зависит от выбранной схемы. Если изменение СП было произведено при пущенном счете, то накопленные с начала текущего часа параметры V, M, Q, Ти будут обнулены. При необходимости сохранения накопленных данных следует выполнить останов счета, дождаться окончания часа, затем изменить номер схемы и вновь запустить счет.
- **ТО** Время отсчета. Служит для установки внутренних часов тепловычислителя. Задается в формате часы—минуты—секунды. Диапазон задания часов от 00 до 23, минут от 00 до 59, секунд от 00 до 59. Изменение времени отсчета, так же как и даты отсчета, приводит к изменению естественного порядка ведения архивов.
- ДО Дата отсчета. Служит для установки календаря тепловычислителя. Задается в формате день—месяц—год; диапазон задания дня от 01 до 31, месяца от 01 до 12, года от 00 до 99. Изменение этого параметра влечет за собой изменение естественного порядка ведения архивов.
- **СР** Расчетные сутки. Определяют дату окончания месячных интервалов архивирования. Задаются в диапазоне от 01 до 28 суток.
- **ЧР** Расчетный час. Определяет время окончания суточных и месячных интервалов архивирования. Задается в диапазоне 00...23 ч.
- **ТС** Тип подключаемых датчиков температуры. $0 W_0 = 1,3910; 1 W_0 = 1,3850; 2 W_0 = 1,4280$. Выбирают, руководствуясь маркировкой ТС в его паспорте. Допускается применение только однотипных термометров сопротивления.
- **КG** Контроль расхода (0; 1). Параметр задает правило работы прибора при выходе текущих значений расхода G1, G2, G3 за границы диапазонов соответственно Gн1...Gв1, Gн2...Gв2 и Gн3...Gв3: при KG = 0 активация HC: HC13 при G1>Gв1 и HC14 при 0<G1<GH1; HC15 при G2>Gв2 и HC16 при 0<G2<Gн2; HC17 при G1>Gв3 и HC18 при 0<G3<Gн3;

- при KG = 1 то же, что при KG = 0 и и присвоение: G1 = Gk1 при G1 > Gb1 или G1 = Gh1 при O < G1 < Gh1;
- G2=Gк2 при G2>Gв2 или G2=Gн2 при 0<G2<Gн2;
- G3=Gк3 при G1>Gв3 или G3=Gн3 при 0<G3<Gн3.
- **С1,** Цена импульса датчика объема $(0,000000...9,9999999 \text{ м}^3)$. Цену
- импульса ВС задают согласно паспорту на датчик объема. Если в паспорте указана фактическая цена импульса, отличающаяся от номинальной цены, то выбирают фактическую цену, тем самым минимизируется погрешность измерений.
- **GB1**, Верхний предел диапазона измерений расхода соответствующего
- **GB2.** датчика объема $(0... 99999,99 \text{ м}^3/\text{ч})$. Если текущий расход превы-
- **GB3** шает значение верхнего предела, то фиксируется нештатная ситуация, а при KG=1 в расчетах участвует не фактический расход, а константа расхода. Задают согласно паспорту на датчик объема.
- **GH1.** Нижний предел диапазона измерений расхода соответствующего
- **GH2.** датчика объема $(0...99999,99 \text{ м}^3/\text{ч})$. Заменяет измеренное значение
- **Gн3** расхода при 0<G<Gн и KG=1. Задают согласно паспорту на датчик объема.
- **Gк1.** Константа расхода по трубопроводу 1, 2 и 3 $(0...9999,99 \text{ м}^3/\text{ч}).\text{В}$
- **Gк2**, случае назначения КG=1, заменяет измеренное значение расхода
- **Gк3** через соответствующий датчик объема при G>Gв1.
- **tк1.** Константа температуры по трубопроводу 1, 2 и 3 (0...175 °C).
- **tк2.** Заменяет измеренное значение температуры соответствующего
- **tк3** датчика при выходе этого значения за пределы 0-176 °С или при отсутствии датчика. Обычно выбирают в соответствии с договором на поставку тепла и теплоносителя, например, максимально возможное значение для соответствующего трубопровода.
- Рк1, Константа избыточного давления по трубопроводу 1, 2 и 3.
- **Рк2.** $(0...16 \text{ кг/см}^2, \text{бар}; 0...1, 6 \text{ МПа})$. Обычно выбирают в соответст-
- **Рк3** вии с условиями договора на поставку тепла и теплоносителя, например, максимально возможное значение для соответствующего трубопровода.
- **txк** Константа температуры холодной воды (0...100 °C). Используется в вычислениях при отключенном термометре холодной воды или при его неисправности. Обычно назначают в соответствии с договором на поставку тепла и теплоносителя. При расчетах по константам txк=0 и Pxк=0 энтальпия холодной воды принимается равной нулю.
- Рхк Константа давления холодной воды $(0...16 \text{ кг/см}^2)$. Обычно назначают в соответствии с договором на поставку тепла и теплоносителя. При расчетах по константам txk=0 и Pxk=0 энтальпия холодной воды принимается равной нулю.
- АМ Алгоритм использования Мк. Определяет условия использования константы Мк взамен разности часовых масс (М1ч–М2ч), для схем 0, 1 и 10 при вычислении часового значения тепловой энергии. Параметр может принимать следующие значения:
 - 0 Мк не используется;
 - 1 (M1ч-M2ч)=Mк при $(-HM)\cdot M1ч\le (M1ч-M2ч)<0$;
 - 2 (M1ч-M2ч)=Mк при (M1ч-M2ч)<0;
 - Если в договоре с энергоснабжающей организацией не оговаривается иное, то параметр АМ задают равным нулю.
- **Мк** Константа часовой массы (0...99999,99 т/ч). При вычислениях тепловой энергии (на интервале в один час) для схем 0, 1 и 10 заменяет вычисленное значение (М1ч–М2ч), в соответствии с алго-

ритмом, задаваемым параметром АМ.

Если в договоре с энергоснабжающей организацией не оговаривается иное, то параметр Мк задают равным нулю.

НМ Уставка на небаланс масс (0,0000...0,0400).

Определяет предельное значение максимального небаланса масс, при выходе за которое, т. е. при (M1ч–M2ч)<(–HM)·M1ч, происходит активизация HC16 (подробнее см. в гл. 7).

Определяется с учетом класса точности используемых в составе теплосчетчика расходомеров.

Например, для расходомеров с относительной погрешностью 2% возможно задать значение HM равное (2+2)/100=0,04.

Параметр задается только для схем 0, 1 и 10 при АМ≠0.

- **AQ** Алгоритм использования Qк (0; 1; 2; 3). Определяет условие, когда вместо вычисленного значения (на интервале в один час) тепловой энергии Q, в часовой архив и тотальный счетчик будет добавлено значение константы Oк.
 - 0 Ок не используется; в архив и в тотальный счетчик тепла всегда добавляется фактическое значение;
 - 1 Qк используется при отрицательном значении Qч, при этом активизируется HC17;
 - 2 то же, что и при AQ=1 и/или при выходе разности часовых масс M1ч—M2ч (для схем 0, 1 и 10) за пределы допустимого диапазона, определяемого параметром HM;
 - 3 то же, что и при AQ=2 и/или при выходе за допустимые пределы значений параметров от любого из первичных преобразователей (т.е. при активизации любой нештатной ситуации от HC08 до HC15). При этом не важно, сколько времени параметр был вне диапазона.
- **Qк** Константа часового тепла (0...9999,99) [Гкал, ГДж, MWh].
- ПЛ Перевод часов на зимнее и летнее время. При назначении ПЛ=0 перевод часов не осуществляется. Если ПЛ=1 автоматически будет осуществлен перевод часов на час назад в 3 часа ночи последнего воскресенья октября и на час вперед в 2 часа ночи последнего воскресенья марта.
- **КД** Контроль сигнала на дискретном входе. (0; 1; 2).
 - 0 контроль отключен;
 - 1 активизация НС02 при наличии сигнала;
 - 2 активизация НС02 при отсутствии сигнала.
- **NT** Сетевой номер (0...99). Используется в запросах со стороны компьютера или принтерного адаптера АПС45. При параллельном подключении нескольких тепловычислителей их сетевые номера должны различаться, в противном случае приборы не могут быть однозначно опознаны. При работе одиночного прибора с любым из перечисленных типов оборудования сетевой номер можно не задавать.
- **ИД** Идентификатор (0...99999999) Служит для упорядочивания информации, получаемой от большого числа приборов учета в централизованных системах сбора и обработки данных. Идентификатор обычно задается равным заводскому номеру прибора.
- **КИ** Конфигурация интерфейса (0;1;2;10;11;12).
 - 0 подключение адаптера АПС45, компьютера или другого оборудования на скорости 2400 бит/с;
 - 1 подключение телефонного модема или GSM- модема, работающего по технологии CSD (9600 бит/с);
 - 2 подключение телефонного модема или GSM- модема, рабо-

тающего по технологии CSD (19200 бит/c);

10 – подключение GSM-модема для работы по технологии GPRS с фиксированным IP адресом (2400 бит/с);

11 – подключение GSM-модема для работы по технологии GPRS с фиксированным IP адресом (9600 бит/с);

12 – подключение GSM-модема для работы по технологии GPRS с фиксированным IP адресом (19200 бит/с).

Значение этого параметра не влияет на обмен данными с внешним оборудованием через оптопорт. При отсутствии внешнего оборудования рекомендуется задавать значение КИ=0. Такое назначение позволит увеличить ресурс батареи.

ВМН Начало разрешенного интервала времени работы модема. Задается в формате часы-минуты (00-00...23-59).

ВМК Конец разрешенного интервала времени работы модема. Задается в формате часы-минуты (00-00...23-59).

Другой вариант использования параметров ВМН и ВМК – управление количеством звонков до автоответа. Для этого следует задать ВМН=ВМК; количество звонков до автоответа будет равно количеству минут в значении параметра. Когда количество минут менее трех, автоответ назначается на второй звонок. При этом значение первых двух цифр этого параметра может быть произвольным.

Изменения, связанные с заданием количества звонков до автоответа, вступают в силу не позднее 30 минут с момента ввода значения параметров ВМН и ВМК. Если необходимо, чтобы эти изменения вступили в силу немедленно, следует выполнить тест стандартных функций модема (НАСТР-ТСТ-МОДЕМ-СТД).

- ПС Печать суточных отчетов (1; 0). Включение/выключение автоматической печати суточных отчетов по тепловому вводу. При ПС=1 ежедневно, в расчетный час, архивные данные за прошедшие сутки ставятся в очередь печати. Задания в очереди будут распечатаны по запросу от принтерного адаптера АПС45. Установки этого параметра не определяют условия вывода отчетов на компьютер и считывающее устройство.
- ПМ Печать месячных отчетов (1; 0). Включение/выключение автоматической печати месячных отчетов по тепловому вводу. Установки этого параметра задают режим автоматического вывода месячных отчетов на принтер аналогично установкам параметра ПС.
- **PW** Пароль для удаленного доступа. Задается пользователем в виде последовательности цифр и букв латинского алфавита. Максимальное количество символов в пароле 8.

Для эффективной защиты данных следует выбирать пароли максимальной длины. Для отключения защиты данных с помощью пароля, следует задать значение PW=0.

Защита паролем не действует при доступе через оптопорт.

Защита паролем не действует при назначении КИ=0.

Списки настроечных данных всегда доступны для просмотра. Любой параметр может быть выведен на табло путем пролистывания списка клавишами $\mathfrak Q$ и $\mathfrak Q$. Ввод и изменение настроечных данных выполняются в так называемом незащищенном режиме, когда переключатель защиты данных находится в нижнем положении. При его установке в верхнее положение любые изменения данных блокируются, а на табло возникает стилизованное изображение замка.

Однако, если по условиям эксплуатации необходимо изменять значения каких-либо параметров без распломбирования прибора, то это возможно предусмотреть при их описании в базе данных. Такие параметры помечаются символом "*" и называются оперативными.

Ввод данных начинается и завершается по нажатию клавиши ВВОД, и осуществляется клавишами

На рисунке 5.6 проиллюстрирована последовательность действий при вводе данных. Значения параметров приведены для примера.

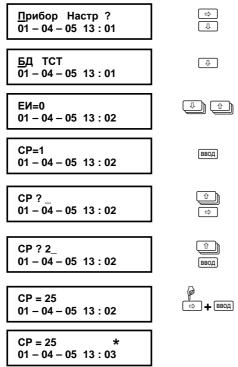


Рисунок 5.6 – Ввод числового значения параметра СР=25

Списки настроечных данных всегда доступны для просмотра. Любой параметр может быть выведен на табло путем пролистывания списка клавишами ϑ и ϑ . Ввод и изменение настроечных данных выполняются в так называемом незащищенном режиме, когда переключатель защиты данных находится в нижнем положении. При его установке в верхнее положение любые изменения данных блокируются, а на табло возникает стилизованное изображение замка.

Однако, если по условиям эксплуатации необходимо изменять значения каких-либо параметров без распломбирования прибора, то это возможно предусмотреть при их описании в базе данных. Такие параметры помечаются символом "*" и называются оперативными.

Режим ТСТ-ЦЕПИ (НАСТР-ТСТ-ЦЕПИ)

- **X4, X5, X6** Значение входного сигнала [Гц] на соответствующем разъеме. Измеряется в диапазоне от 0,0008 до 1000 Гц с относительной погрешностью не более 0,01%.
- **X7, X8** Значение входного сигнала [Ом] на соответствующем разъеме. Измеряется в диапазоне 100-160 Ом с абсолютной погрешностью не более 0,04 Ом.

Режим ТСТ-МОДЕМ (НАСТР-ТСТ-МОДЕМ)

Этот пункт содержит ряд сервисных функций для работы с телефонными и GSM-модемами

Тест стандартных функций модема (НАСТР-ТСТ-МОДЕМ-СТД)

Тест позволяет судить о правильности подключения и настройки (инициализации) модема. Тест работает как с телефонными, так и с GSM-модемами.

Если настройка и подключение модема к прибору выполнены правильно (согласно рекомендациям, опубликованным на сайте www.logika.spb.ru), результатом выполнения теста должно быть сооб-

щение Rx:OK, выводимое на табло прибора (рис.5.7). Число "2" в первой строке соответствует количеству звонков до автоответа и приведено для примера.

Тх:АТ S0=2 Рисунок 5.7 Изображение на табло при успешном выполнении теста

При возникновении ошибок или при отсутствии ответов модема на табло будет выведено сообщение Rx:Ошибка или Rx:Нет ответа.

Информация о GSM модеме (HACTP -TCT-MOДЕМ-GSM)

Пролистывание информации на табло осуществляется с помощью клавиш û и ↓. Пример выводимой информации приведен на рисунке 5.8.

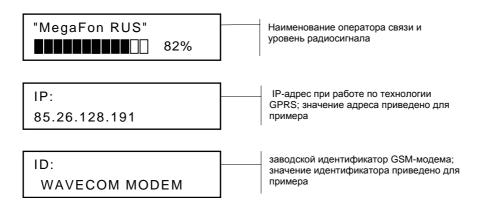


Рисунок 5.8 – Информация, выводимая на табло в режиме HACTP-TCT-MOДЕМ-GSM.

Вывод IP-адреса GSM-модема осуществляется в том случае, если передача данных производится по технологии GPRS, что должно быть отражено в настройках модема и настроечной базе данных тепловычислителя (параметр КИ).

Запрос состояния счета (НАСТР-ТСТ-МОДЕМ-СЧ)

В этом режиме оператору сотовой связи посылается запрос отчета о текущем состоянии денежного баланса абонента. Передача запроса занимает некоторое время, в течение которого на табло прибора индицируется надпись Передача запроса. После получения, ответ оператора выводится на табло. В противном случае выводится сообщение Нет ответа.

Раздел справка (?)

В справочном разделе содержатся сведения о модели, номере версии и заводском идентификаторе тепловычислителя.

6 Диагностика

Существует множество обстоятельств, в силу которых значения измеряемых параметров, а также режимов функционирования тепловычислителя и внешнего оборудования могут лежать вне пределов, определенных как штатные. Эти события диагностируются по заданным критериям, и в течение всего времени, пока имеет место хотя бы одна нештатная ситуация, на табло это сопровождается характерным миганием курсора.

Возникновение некоторых нештатных ситуаций может повлиять на вычислительные процедуры – вместо измеряемой величины, вышедший за пределы допустимого диапазона, в расчеты будет подставлено константное значение.

Ниже приведен полный список нештатных ситуаций. Для их устранения, возможно, требуется вмешательство обслуживающего персонала.

- **HC00** Разряд батареи ($U_6 < 3,1$ В). Следует в течение месяца заменить батарею.
- **HC01** Перегрузка по цепям питания датчиков объема. Суммарный ток, потребляемый датчиками превышает 100 мА.
- **HC02** Изменение сигнала на дискретном входе.
- **HC08** Параметр t1 по вводу вне диапазона 0-176 °C.
- **HC09** Параметр t2 по вводу вне диапазона 0-176 °C.
- **HC10** Расход через BC1 выше верхнего предела диапазона измерений (G1>Gв1).
- **HC11** Ненулевой расход через BC1 ниже нижнего предела диапазона измерений (0<G1<Gн1).
- **HC12** Расход через BC2 выше верхнего предела диапазона измерений (G2>Gв2).
- **HC13** Ненулевой расход через BC2 ниже нижнего предела диапазона (0 < G2 < GH2).
- **HC14** Расход через BC3 выше верхнего предела диапазона измерений (G3>Gв3).
- **HC15** Ненулевой расход через BC3 ниже нижнего предела диапазона (0<G3<Gн3).
- **HC16** Диагностика отрицательного значения разности часовых масс теплоносителя (М1ч–М2ч), выходящего за допустимые пределы, т.е. при (М1ч–М2ч)<(–НМ)·М1ч. Нештатная ситуация фиксируется по окончании часа и заносится в архив для схем 0, 1 и 10. Весь следующий час она активна в текущих параметрах.
- **HC17** Отрицательное значение часового количества тепловой энергии (Qч<0). Нештатная ситуация фиксируется по окончании часа и заносится в архив. Весь следующий час она активна в текущих параметрах.
- **HC18** Значение разности часовых масс (М1ч–М2ч) меньше нуля. Нештатная ситуация фиксируется по окончании часа и заносится в архив для схем 0, 1 и 10. Весь следующий час она активна в текущих параметрах.

7 Контроль параметров

Существуют случаи, когда измеренные или вычисленные значения не используются в дальнейших расчетах и не попадают в архив. Связано это с тем, что вычислитель контролирует ряд параметров, проверяя их на корректность или на соответствие диапазону измерений, а при выходе за допускаемые пределы использует константы.

Контроль расхода

Тепловычислитель, контролируя измеренное значение объемного расхода, активизирует нештатную ситуацию, если текущий расход G превышает заданное в настроечных параметрах значение верхнего предела диапазона измерений преобразователя объема Gв. Соответствующая HC активизируется также в том случае, когда значение текущего расхода Gт удовлетворяет условию 0 < G < Gн.

Значения объемного расхода сами по себе не входят в уравнения измерений тепловой энергии и массы. Однако при назначении настроечного параметра KG=1, выход значения расхода из диапазона GH...GH повлечет за собой изменений данных учета. На время τ_1 , когда G>GH объем теплоносителя будет рассчитываться не по количеству пришедших от H0 импульсов, а по формуле H1. Аналогично, на время H2, когда H3 объем теплоносителя рассчитывается как H4 H5. При назначении настроечного параметра H6 объем всегда рассчитываются пропорционально количе-

ству пришедших импульсов. Показания расхода приравниваются нулю, если импульсы от ВС поступают реже, чем раз в 20 минут.

Описанные выше алгоритмы проиллюстрированы на рисунках 7.1 и 7.2.

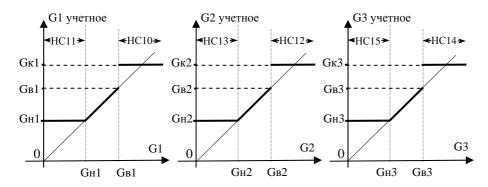


Рисунок 7.1 – Контроль расхода и условия перехода на константы: при KG = 1

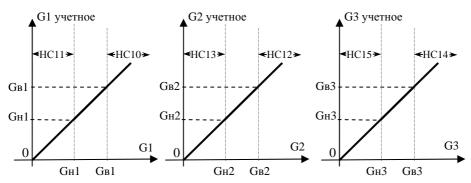


Рисунок 7.2 – Контроль расхода при KG = 0

Контроль температуры

Сигналы от термометров сопротивления измеряются раз в 3 минуты. Исключением являются случаи, когда к тепловычислителю подключено внешнее питание или включено табло. При этом процедура измерения производится раз в 5 секунд.

Тепловычислитель контролирует измеренные текущие значения температур t1, t2, t3, tx, проверяя их на соответствие диапазону 0-176 °C. Если текущее значение температуры вышло за указанные пределы, то вместо неё в расчеты подставляется константа с активизацией соответствующей нештатной ситуации, что проиллюстрировано на рисунке 7.3.

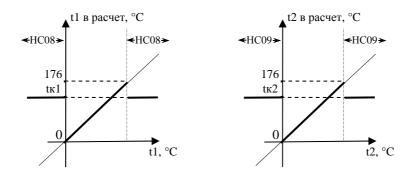
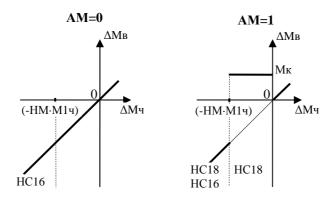


Рисунок 7.3 – Контроль температуры и условия использования констант


Контроль разности "часовых масс"

В схемах потребления 0, 1 и 10 при расчете количества теплоты используется разность Δ Мч = (М1ч–М2ч). На практике встречаются случаи, когда измеренная масса воды в обратном трубопроводе превышает массу воды в подающем трубопроводе. Как правило, это является следствием отрицательной разности систематических составляющих погрешностей расходомеров. В тепловычислителе предусмотрена возможность контроля и корректировки подобных ситуаций. Алгоритм ра-

боты тепловычислителя при ΔM ч<0 определяется настроечным параметром AM.

В конце каждого часа для указанных схем потребления проверяется и может быть заменено на Δ Мв значение разности масс Δ Мч, используемое при расчете количества тепла (рисунок 7.4).

По результатам диагностики значения Δ Мч формируются сообщения о нештатных ситуациях HC16 и HC18 (рисунок 7.4).

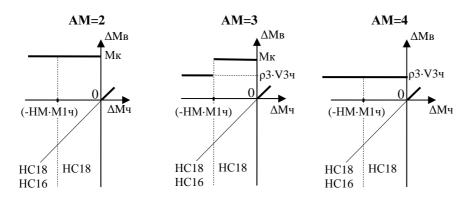


Рисунок 7.4 – Контроль разности часовых масс

Контроль "часового тепла"

Если накопленное за час значение тепловой энергии оказывается меньше нуля, то активизируется признак нештатной ситуации НС17.

В этом случае тепловычислитель может использовать для подстановки в архив и в тотальный счетчик значение константы Qк вместо вычисленного значения тепловой энергии Qч. Условия такого использования сведены в таблице 7.4.

Таблица 7.4 – Контроль часового тепла

		Использование Qк при значении AQ			
		1	2	3	
Qu<0	_	+	+	+	
(М1ч–М2ч)<(–НМ)·М1ч при СП={0, 1, 10}		_	+	+	
В течение часа возникала любая из НС {03; 0812}		_	_	+	

Примечание. "+" – константа используется, "-" – константа не используется.

Контроль сигнала на дискретном входе

Тепловычислитель осуществляет непрерывный контроль сигнала на дискретном входе, активизируя признак нештатной ситуации HC02 в зависимости от значения параметра КД:

- 0 контроль отключен, НС02 не активизируется;
- 1 НС02 при наличии сигнала;
- 2 НС02 при отсутствии сигнала.

Контроль перегрузки по цепям питания датчиков

В тех случаях, когда суммарный ток по цепям питания преобразователей объема (модель 941.10) превышает 100 мА, активизируется признак нештатной ситуации НС01.

Контроль батареи

Нештатная ситуация НС00 становится активной при падении напряжения батареи ниже 3,2 В, что говорит о необходимости её замены.

8 Итоговые отчеты

Типы отчетов

В тепловычислителе предусмотрены суточный и месячный итоговые отчеты о потреблении тепловой энергии и воды. Они составляются на основе данных, накопленных в интервальных архивах, и формируются автоматически при выполнении архивных записей.

Вывод на принтер

Печать итоговых отчетов выполняется, если установлены соответствующие признаки ПС и ПМ в базе настроечных данных для каждого теплового ввода.

Принтер подключается к тепловычислителю посредством адаптера АПС45, который периодически запрашивает тепловычислитель о наличии подготовленных отчетов и, анализируя готовность принтера, управляет процессом их вывода. Если принтер не готов, сформированные отчеты не будут потеряны — они ставятся в очередь печати, глубина которой составляет 65 заданий. Так что, принтер можно подключать лишь периодически, на время печати отчетов в присутствии обслуживающего персонала. При неудачных распечатках какого-либо отчета его можно вновь поставить в очередь печати. Требования к используемому принтеру: русификация согласно кодовой странице 866, интерфейс CENTRONICS, формат листа А4. Датирование отчетного интервала (в строке "Отчет сформирован") и интервалов, входящих в отчет (в первом столбце таблицы), выполняется по тем же правилам, что при датировании архивных записей. В столбце НС символом "*" отмечается наличие каких-либо нештатных ситуаций на этих интервалах.

Вывод на компьютер

Для считывания данных на компьютер и подготовки отчетов служит программа ПРОЛОГ, входящая в комплект поставки тепловычислителя. Она позволяет получать данные из прибора любым из способов: при непосредственном подключении компьютер к прибору, через телефонную линию, посредством модема или перенесенных с помощью накопителя АДС90. Полученные данные сохраняются, систематизируются, и могут быть распечатаны в виде отчета произвольной формы, либо экспортированы в любой из форматов: .xls, .rtf, .txt, .html.

Однако возможности автоматизированного сбора данных этим не ограничиваются – поставляемый в комплекте с тепловычислителем OPC-сервер, предоставляет возможность доступа ко всей информации о теплопотреблении, имеющейся в приборе.

Комбинированный вывод

Использование адаптера АПС45 обеспечивает возможность получения отчетов параллельно на принтер и компьютер, в том числе при модемном подключении последнего. А наличие двух коммуникационных портов тепловычислителя – обычного, совместимого с RS-232, и оптического – позволяет работать одновременно и со стационарно подключенным оборудованием, и с переносным компьютером.

9 Безопасность

Тепловычислитель соответствует требованиям ГОСТ Р 51350-99 в части защиты от поражения электрическим током и не представляет опасности при эксплуатации.

Источник постоянного тока, используемый для организации внешнего питания тепловычислителя,

должен иметь встроенную защиту от короткого замыкания в цепи нагрузки, а его выходные цепи должны быть гальванически изолированы от сети питания.

10 Подготовка к работе

Общие указания

После распаковки тепловычислителя необходимо проверить его комплектность на соответствие паспорту. Затем тепловычислитель помещают не менее чем на сутки в сухое отапливаемое помещение; только после этого его можно вводить в эксплуатацию.

На время проведения монтажных работ, когда крышка монтажного отсека снята, следует обеспечить защиту от попадания пыли и влаги внутрь корпуса тепловычислителя. Рекомендуется его установку выполнять в последнюю очередь, по окончании монтажа электрических цепей.

Монтаж электрических цепей

Подключение датчиков и прочего внешнего оборудования к тепловычислителю выполняют многожильными кабелями. После разделки концов кабелей под монтаж их пропускают через установленные на крышке монтажного отсека кабельные вводы, после чего заворачивают накидные гайки настолько, чтобы обеспечить механическую прочность закрепления кабелей и обжим сальниковых уплотнителей. Концы жил закрепляют в штекерах, снабженных винтовыми зажимами. Максимальное сечение каждой жилы составляет 1,5 мм². Диапазон диаметров используемых кабелей ограничивается конструкцией кабельных вводов и составляет 5-10 мм.

Для защиты от влияния промышленных помех рекомендуется использовать экранированные кабели, металлорукава или металлические трубы, однако такое решение должно приниматься для конкретного узла учета. В условиях эксплуатации помехи могут быть обусловлены различными факторами, например, работой тиристорных и иных преобразователей частоты, коммутацией мощных нагрузок с помощью реле и контакторов, короткими замыканиями и дуговыми разрядами в электроустановках, резкими изменениями нагрузки в электрических распределительных системах, срабатыванием защитных устройств в электрических сетях, электромагнитными полями от радио- и телевизионных передатчиков, непрямыми разрядами молний и пр.

Рабочее заземление экрана кабелей должно выполняться только в одной точке, как правило, на стороне тепловычислителя. Оплетки должны быть электрически изолированы по всей длине кабеля, использование их для заземления корпусов датчиков и прочего оборудования не допускается.

Если в непосредственной близости (в радиусе менее 20 метров) от оборудования узла учета отсутствуют промышленные агрегаты, способные порождать перечисленные выше и подобные факторы возникновения помех, допускается использовать неэкранированные кабели.

Подключение внешних цепей выполняют согласно рисункам 10.1 и таблицам 10.1, 10.2 и 10.3 к штекерам, снабженным маркировкой номеров контактов и позиционной маркировкой. К покабельному распределению цепей специальных требований не предъявляется, оно определяется соображениями экономичности и удобства монтажа.

Все используемые блоки питания должны соответствовать требованиям стандартов безопасности.

Предельная длина линий связи с датчиками температуры и объема определяется сопротивлением каждого провода цепи, которое не должно превышать 50 Ом. Электрическое сопротивление изоляции между проводами, а также между каждым проводом и экранной оплеткой или землей должно быть не менее 200 МОм — это требование обеспечивается выбором используемых кабелей и качеством выполнения монтажа цепей. При работе с тепловычислителем следует иметь в виду, что "минусовые" контакты входных сигналов от датчиков температуры соединены между собой; в таблицах подключения общие контакты этой группы отмечены знаком "*". "Минусовые" контакты цепей входных сигналов от датчиков объема и внешнего питания также соединены между собой; в таблицах подключения общие контакты этой группы цепей отмечены знаком "#". Эти две группы цепей гальванически не отделены друг от друга, однако соединять общие контакты, принадлежащие разным группам, не допускается.

При подключении компьютера или модема они могут быть удалены от тепловычислителя на расстояние до 100 м. Для адаптера АПС45 это расстояние составляет 2 км при сопротивлении каждого провода линии связи, не превышающем 150 Ом.

Заявленная степень защиты от пыли и влаги обеспечивается только при использовании кабелей

круглого сечения.

По окончании монтажа электрических цепей следует убедиться в правильности выполнения всех соединений, например, путем их "прозвонки". Этому этапу работы следует уделить особое внимание – ошибки монтажа могут привести к отказу тепловычислителя.

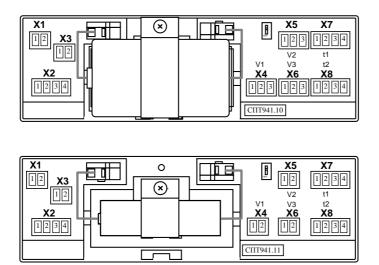


Рисунок 10.1 – Размещение гнезд для подключения внешних цепей

Таблица 10.1 – Подключение датчиков

Штекер прибора			Внешние цепи
X4-X6	1 2 [#]		Датчик объема без питания от тепловычислителя.
X4-X6	1 2 [#] 3	+Uпит	Датчик объема с питанием от тепловычислителя. Подключение для модели 941.10.
X7, X8	1 2 3 4*	t	Датчик температуры.

Таблица 10.2 – Подключение вспомогательного оборудования

Цепи прибора	Штекер прибора	Внешние цепи		
ф ф ф ф ф ф ф ф ф ф ф ф ф ф ф ф ф ф ф	$X2 \begin{bmatrix} \frac{1}{2} \\ \frac{3}{4} \end{bmatrix}$	Тх Адаптер АПС45 Rx 0		
\$	$X3 \qquad \frac{1}{2}$	24 B (max), 5 MA (max)		
+ U _{пит} \Leftrightarrow	$X1 \qquad \frac{1}{2^{\#}}$			

Компьютер Штекер Модем Цепи прибора прибора DB-9 DB-9 **DB-25** 3 2 3 RS232-совместимый пор 1 параллельно подклю-наются до 3-х приборое 7 7 5 5 2 X2 6 3 4 6 6 8 4 2 3 2

Таблица 10.3 Подключение компьютера или телефонного модема

Монтаж тепловычислителя

Данные об установочных размерах и способе крепления тепловычислителя на монтажном щите приведены в разделе 3.

После размещения тепловычислителя на месте эксплуатации к нему подключают уже смонтированные внешние цепи, устанавливая штекеры в гнезда на печатной плате строго согласно их позиционной маркировке. Необходимо помнить, что ошибки при подключении, как и ошибки монтажа, могут привести к отказу тепловычислителя.

Подключение модема

Телефонный модем

Модем перед подключением к тепловычислителю необходимо настроить следующим образом:

- управление потоком (RTS/CTS) выключено;
- управление готовностью (DTR/DSR) выключено;
- линия DSR в активном состоянии.

Установки скоростей соединения, протоколов коррекции ошибок и сжатия не лимитируются. Настройки заносят в тот профиль, который устанавливается при включении питания модема.

Приведенные настройки для модемов семейства US Robotics соответствуют строке инициализации AT &F1 &R1 &H &D L &W

При работе с модемом необходимо установить в настроечных параметрах тепловычислителя значение КИ= 1 или 2.

Если параметр $PW \neq 0$, то при опросе тепловычислителя будет происходить шифрование данных.

Период, когда модем будет поднимать трубку, определяется параметрами ВМН и ВМК.

Другой вариант использования параметров ВМН и ВМК – управление количеством звонков до автоответа. Для этого следует задать ВМН=ВМК; количество звонков до автоответа будет равно количеству минут в значении параметра. Когда количество минут менее трех, автоответ назначается на второй звонок. При этом значение первых двух цифр этого параметра может быть произвольным. Например, назначение ВМН=ВМК=00-09 задает автоответ на девятый звонок.

GSM-модем

Рекомендации по подключению и настройке GSM-модемов, работающих по технологии GPRS или CSD (HSCSD) опубликованы в сети Интернет по адресу www.logika.spb.ru.

Ввод в эксплуатацию

Базу настроечных данных, необходимых для работы тепловычислителя в составе узла учета, можно вводить на месте эксплуатации, однако удобнее это сделать до его монтажа. Настроечные данные обычно приведены в паспорте узла или в его проектной документации.

После ввода настроечных данных контролируют работоспособность смонтированной системы по показаниям измеряемых параметров, значения которых должны соответствовать режимам работы узла. При сдаче системы в эксплуатацию проверяют введенные данные на соответствие документации узла учета.

Проверив корректность настроечных данных, выполняют сброс архивов, а затем – пуск счета. В течение некоторого времени наблюдают за работой тепловычислителя, контролируя отсутствие нештатных ситуаций. Далее устанавливают переключатель защиты данных в верхнее положение.

В заключение устанавливают на место и закрепляют крышку монтажного отсека, после чего пломбируют ее двумя навесными пломбами.

Замена батареи

Конструкция тепловычислителя позволяет производить замену батареи непосредственно на узле учета. Замена батареи должна быть произведена в течение месяца после возникновения нештатной ситуации HC00.

В качестве элемента питания используется литиевая батарея с напряжением 3,6 В типа LS33600 в модели 941.10 и LS14500 в модели 941.11.

Для замены батареи следует выполнить следующие операции:

- открыть крышку монтажного отсека;
- установить переключатель защиты данных в нижнее положение;
- выполнить останов счета;
- снять скобу, крепящую батарею;
- с помощью тонкой отвертки ослабить крепления зажима выводов батареи и вынуть батарею;
- тем же способом ослабить крепления зажима и соблюдая полярность зажать выводы новой батареи:
- установить скобу, крепящую батарею;
- проверить и при необходимости установить текущие дату и время;
- при необходимости выполнить пуск счета;
- установить переключатель защиты в верхнее положение;
- закрыть монтажный отсек.

11 Транспортирование и хранение

Транспортирование тепловычислителей в транспортной таре допускается проводить любым транспортным средством с обеспечением защиты от атмосферных осадков и брызг воды.

Условия транспортирования:

- температура окружающего воздуха от минус 25 до 55 °C;
- относительная влажность не более 95 % при температуре 35 °C;
- атмосферное давление от 84 до 106,7 кПа;
- удары (транспортная тряска) ускорение до 98 м/с², частота до 2 Гц.

Условия хранения тепловычислителей в транспортной таре соответствуют условиям транспортирования в части воздействия климатических факторов внешней среды.