СОДЕРЖАНИЕ

1 (ОПИСАНИЕ И РАБОТА	5
1.1	Назначение	4
1.2	Технические характеристики	1
1.3	Состав.	1
1.4	Устройство и работа	14
1.5	Маркировка	18
1.6	Упаковка и консервация	2
1.7	Комплектность	22
2	ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ	2
2.1	Требования безопасности	2
2.2	Эксплуатационные ограничения	2
2.3	Подготовка к работе	24
2.4	Порядок работы	2
2.5	Возможные неисправности и способы их устранения	2
3	ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ	3
3.1	Общие указания	3
3.2	Меры безопасности при обслуживании	3
4	ХРАНЕНИЕ И ТРАНСПОРТИРОВАНИЕ	3
5	ГАРАНТИИ ИЗГОТОВИТЕЛЯ	3
6	СВЕДЕНИЯ О РЕКЛАМАЦИЯХ	3
7	СВИДЕТЕЛЬСТВО ОБ УПАКОВЫВАНИИ	3
8	СВИДЕТЕЛЬСТВО О ПРИЕМКЕ	3
9	ОСОБЫЕ ОТМЕТКИ	4
При	пложение А Конфигурация газоанализатора	4
При	пложение Б Инструкция по зарядке аккумуляторов	4

Настоящее руководство по эксплуатации предназначено для ознакомления с основными параметрами и характеристиками, описанием работы и правилами технического обслуживания переносных газоанализаторов "ХОББИТ-Т" с датчиками типа «ХОББИТ-ТВ» (в дальнейшем — газоанализаторы), выпускаемых по техническим условиям ЛШЮГ.413411.010 ТУ, и гарантиями изготовителя на данные приборы.

Руководство по эксплуатации содержит сведения об устройстве, принципе действия, технических характеристиках газоанализаторов и указания, необходимые для их правильной и безопасной эксплуатации, технического обслуживания, ремонта, хранения и транспортирования.

К работе с газоанализаторами допускаются лица, прошедшие инструктаж по технике безопасности в установленном порядке и изучившие настоящее РЭ. Ремонт прибора проводится только персоналом предприятия-изготовителя или лицами, уполномоченными предприятием — изготовителем на проведение данных работ.

ВНИМАНИЕ! Газоанализаторы подлежат поверке. Межповерочный интервал – 12 месяцев.

ВНИМАНИЕ! Газоанализаторы предназначены для эксплуатации во взрывоопасных помещениях.

1 ОПИСАНИЕ И РАБОТА

1.1 Назначение

1.1.1 Газоанализатор «Хоббит-Т» с датчиком типа «Хоббит-ТВ» исполнения В предназначен для:измерения содержания токсичных газов (оксид углерода СО, сероводород Н2S, диоксид серы SO₂, хлор Cl₂, фтор F₂, фтористый водород HF, аммиак NH₃, озон О₃);измерения содержания кислорода О₂; измерения содержания суммы горючих газов, приведенной к метану СН4 (или пропану С₃Н₈, гексану С₆Н₁₄, водороду Н₂, оксиду углерода СО); сигнализации о выходе содержания определяемых газов в контролируемой рабочей зоне за допустимые пределы; обеспечения безопасных условий труда противоаварийных системах использования защиты (Разрешение Госгортехнадзора РФ №РРС 04-10698 на выпуск и применение от 17.12.03).Примечание. Требуемый задаются потребителем при измеряемых газов заказе газоанализатора и определяют число каналов измерения. Максимальное число каналов для газоанализатора переносного исполнения – 3.

1.1.2 Конфигурация конкретного газоанализатора приводится в приложении А руководства по эксплуатации: количество каналов измерения (один канал — один анализируемый газ), перечень анализируемых газов, диапазонов измерения, установленных порогов срабатывания и т.д.

- 1.1.3 Датчик типа «Хоббит-ТВ» исполнения В выпускается по техническим условиям ЛШЮГ.413411.012 ТУ и имеет вид взрывозащиты 1ExibIIBT6. Разделы руководства по эксплуатации ЛШЮГ.413411.012 РЭ, включенные в данное РЭ, выделены жирным шрифтом.
- 1.1.4 Датчик с блоком искрозащиты типа "Хоббит-ТВ" (в дальнейшем датчик) непрерывного действия, предназначен для преобразования содержания измеряемых газов в последовательный двоичный код. Датчик применяется для обеспечения безопасных условий труда, в частности, в противоаварийных системах защиты, в составе устройств сигнализации об увеличении содержания опасных газов выше допустимых пределов или недостатке кислорода в воздухе рабочей зоны взрывоопасных помещений.
- 1.1.5 Датчик состоит из блока сенсоров и встроенного в него блока искрозащиты. Для визуализации текущих показаний датчик комплектуется блоком индикации. Датчик и блок индикации соединены кабелем.
- 1.1.6 Датчик соответствует требованиям ГОСТ Р 51330.10-99 и ГОСТ Р 51330.0-99, выполнен с видом взрывозащиты "искробезопасная электрическая цепь" с уровнем "взрывобезопасный", маркировка по взрывозащите:
- блока сенсора- 1ExibIIBT6 (в комплекте «Хоббит-ТВ»);

Приложение Б

ИНСТРУКЦИЯ ПО ЗАРЯДКЕ АККУМУЛЯТОРОВ ПЕРЕНОСНЫХ ГАЗОАНАЛИЗАТОРОВ

При разряде аккумуляторных батарей ниже допустимого уровня на дсплей блока индикации выводится мигающая буква "А". При продолжении эксплуатации прибора и дальнейшей разрядке предупреждающий знак гаснет и выводится сообщение «Аккум. разряжен.

Для подзарядки аккумуляторов необходимо выключить прибор, подключить зарядное устройство к блоку индикации через разъем на его корпусе и включить зарядное устройство в сеть 220 В, 50 Гц. Газоанализатор включится автоматически при включении зарядного устройства в сеть. Напряжение аккумулятора в процессе заряда можно проконтролировать. Для этого нажать кнопку «ВВОД» – на дисплей будет выведено главное меню газоанализатора. С помощью кнопки «▼» установить курсор на пункт меню «Аккумулятор» и нажать кнопку «ВВОД» - на дисплей выводится напряжение аккумулятора. В процессе заряда оно будет увеличиваться от начального значения до величины порядка 5.8-5.9B, что соответствует полному заряду аккумулятора. Ориентировочная длительность подзарядки полностью разряженного аккумулятора – 15 - 16 час.

Приложение A Конфигурация переносного газоанализатора

,	Параметр		Канал	Каналы №№	
$N_{ m Q} = \Pi/\Pi$		1	2	8	4
1	Fa3				
2	Тип сенсора				
3	Диапазон измерения				
4	Пороги срабатывания				
	•				
5	Канал поверен по ПГС				
Нали	Наличие взрывозащиты: ExibIIBT6	9			
1	Тип и номинальное напряжение аккумулятора: HRR160A, 1.2B	ение аккуму	улятора: Е	IRR160A,	1.2B
5	Периодичность подзарядки аккумулятора при хранении: один раз в квартал	аккумулятс	эра при хр	анении: о,	цин раз в
3	Длина кабеля, м: 6				
4	Вариант интерфейса: Б (цифровой)	ровой)			

Оттиск клейма или печати (штампа) Начальник ОТК

(подпись)

-блока индикации- ExibIIB (в комплекте «Хоббит-ТВ»).

- 1.1.7 Датчик предназначен для измерений во взрывоопасных зонах помещений и наружных установок согласно 7.3 ПУЭ изд. 6 и другим нормативным документам, регламентирующим применение электрооборудования во взрывоопасных условиях.
- 1.1.8 По устойчивости к климатическим воздействиям датчик относится к группе УХЛЗ.1 к группам С4 и Р1 по ГОСТ 12997-84.
- 1.1.9 Степень защиты оболочкой согласно ГОСТ 14254-96 IP-50 для блоков индикации и IP-53 для блоков датчиков.
- 1.1.10 По устойчивости к воздействию синусоидальной вибрации датчик относится к группе N1 по ГОСТ 12997-84.
- 1.1.11 Обозначение газоанализатора включает в себя: наименование "Хоббит-Т", химические формулы измеряемых газов, исполнение, вариант изготовления по типу интерфейса и обозначение ТУ. Пример обозначения для газоанализатора с каналом измерения оксида углерода и каналом измерения метана:

«ХОББИТ-Т-СО-СН₄» переносной, ЛШЮГ.413411.010 ТУ, с датчиком типа «ХОББИТ-ТВ» исполнение В.

(.О.И.Ф)

9 ОСОБЫЕ ОТМЕТКИ

ОТМЕТКИ О ПРОВЕДЕННОМ РЕМОНТЕ

Таблица 1

Определяемый Компонент	Допускаемая перегрузка по концентрации*	Диапазон показаний	Цена единицы наименьшего разряда	Диапазон измерения	Допускаемое содержание неизмеряемых компонентов, не более,
1	2	3	4	5	6
Оксид углерода СО	8	0 - 150 мг/м ³	1 мг/м ³	20 - 120 мг/м ³	NO $-3 \text{ M}\Gamma/\text{M}^3$, NO ₂ $-3 \text{ M}\Gamma/\text{M}^3$, NH ₃ $-20 \text{ M}\Gamma/\text{M}^3$, SO ₂ $-100 \text{ M}\Gamma/\text{M}^3$
Сероводород H ₂ S	10	0 - 36,0 мг/м ³	0,1 мг/м ³	5,0 - 30,0 мг/м ³	$SO_2-10 \text{ mr/m}^3$, $CO-50 \text{ mr/m}^3$, $NO_2-20 \text{ mr/m}^3$, $NO-100 \text{ mr/m}^3$
Диоксид серы SO_2	10	0 - 120 мг/м ³	1 мг/м ³	10 - 100 мг/м ³	H_2S не допускается, CO-10 мг/м ³ , NO ₂ -20 мг/м ³ , NO-40 мг/м ³
Хлор Cl ₂	40	$0 - 30,0$ $M\Gamma/M^3$	0,1 мг/м ³	1,0 - 25,0 мг/м ³	
Фтор F ₂	10	0 - 0,20 мг/м ³	0,01 _{мг/м} ³	$0.03 - 0.15$ $M\Gamma/M^3$	Cl ₂ -0,5 мг/м ³
Фтористый водород HF	5	0 - 3,5 _{мг/м} ³	0,1 мг/м ³	0,5 - 3,0 мг/м ³	HCl -4,5 мг/м ³
Аммиак NH ₃	3	0 - 700 _{мг/м} ³	1 мг/м ³	20 - 600 _{мг/м} ³	
Озон О ₃	-	$0-600$ $MK\Gamma/M^3$	10 мкг/м ³	$100 - 500$ $MK\Gamma/M^3$	Cl ₂ -0,5 мг/м ³
Кислород О2	-	0÷36,0 об.%	0,1 об.%	1,0÷30,0 об.%	
Сумма горючих газов, с градуировкой по:				5÷50% НКПР или:	

Дата	Причина поступления в ремонт.	Сведения о произведенном ремонте	Подпись

ОТМЕТКИ О ТЕХНИЧЕСКОМ ОБСЛУЖИВАНИИ

Дата	Проверены каналы (номер канала, газ)	Заключение о годности для дальнейшей эксплуатации.	Подпись исполнителя

8 СВИДЕТЕЛЬСТВО О ПРИЕМКЕ

Датчик "Хоббит-ТВ" заводской номер_	соответствует
техническим условиям ЛШЮГ.413411.0	012 ТУ и признан годным
для эксплуатации.	
Дата выпуска	
Начальник ОТК (подпись)	(Ф.И.О.)
Газоанализатор "Хоббит-Т	
исполнение	
заводской номер блок датчиков	
заводской номер блок индикации	
соответствует техническим условиям.	лшюг.413411.010 ту и
признан годным для эксплуатации.	
Эттиск клейма или печати (штампа)	
Цата выпуска	
Начальник ОТК	
(подпись)	(Ф.И.О.)
азоанализатор поверен и на основании ре	езультатов первичной
оверки признан годным к применению.	
Эттиск поверительного клейма или печаті	и (штампа)
Ц ата поверки	
Іоверитель	
(подпись)	(Ф.И.О.)

Продолжение таблицы 1

метану	не огр.	0÷2,55	0,01 об.%	0,22-2,20	
CH_4		об.%		об.%	
пропану	не огр.	0÷1,00	0,01 об.%	0,09÷0,85	
C_3H_8		об.%		об.%	
гексану	не огр.	0÷25,5 мг/л	0,1 мг/л	1,8÷17,5	
C_6H_{14}				мг/дм ³	
водороду Н ₂	не огр.	0÷2,55 об.%	0,01 об.%	0,20÷2,00 об.%	
оксиду углерода СО	не огр.	0÷6,50 об.%	0,01 об.%	0,55÷5,45 об.%	

Примечания:

*) - допускаемая перегрузка по концентрации приводится как кратность от верхнего предела диапазона измерений (ВП).

- 1.2 Технические характеристики
- 1.2.1 Газоанализатор по типу интерфейса относится к варианту Б (цифровой интерфейс блока датчика).
- 1.2.2 Диапазоны измерений и показаний приведены в таблице 1.
- 1.2.3 Предел основной погрешности газоанализатора не превышает $\pm 25\%$, кроме каналов измерения кислорода. Для каналов измерения кислорода предел основной абсолютной погрешности не превышает $\pm (0,05\ C+0,2)$, % об., где C- измеренная концентрация кислорода, % об.
- 1.2.4 Предел допускаемой вариации показаний газоанализатора в долях от предела основной погрешности не превышает 0,5.
- 1.2.5 Предел допускаемого изменения показаний в течение 14 суток непрерывной работы в долях от предела основной погрешности не превышает 0,5.
- 1.2.6 Дополнительная погрешность не превышает: 0,5 от предела основной погрешности при изменении температуры на каждые
 10°C в пределах рабочего диапазона температур;
 - 1,5 от предела основной погрешности при содержании неизмеряемых компонентов в пределах согласно графе 6 таблицы 1.
- 1.2.7 Предел Т_{0,9д} допускаемого время установления показаний не превышает 20 с для О₂ и горючих газов, 30 с для Cl₂ и О₃ (группа И-2 по ГОСТ 13320-81), 300 с для НГ (группа И-5) и 90 с (группа И-4) для прочих газов. Время срабатывания сигнализации не более времени установления показаний.

7 СВИДЕТЕЛЬСТВО ОБ УПАКОВЫВАНИИ

Газоанализат	гор "Хоббит- Т	_" ЛШЮГ.413411.010
ТУ исполнение	заводской номер	упакован
предприятием-изго	говителем согласно требог	ваниям,
предусмотренным т	ехнической документацие	ей.
(должность)	(подпись)	(Ф.И.О.)
Лата упаковки		

- 1.2.8 Номинальные условия эксплуатации датчика:
- рабочие климатические условия для блока сенсоров УХЛ2 ГОСТ 15150-69 (температура окружающего воздуха от минус 40 до 40°С; относительная влажность воздуха до 95% при температуре 30°С);
- рабочие климатические условия для блока индикации УХЛ2 ГОСТ 15150-69 (температура окружающего воздуха от минус 20 до 40°C;
- относительная влажность воздуха до 95% при температуре 30°C);- атмосферное давление от 84 до 106.7 кПа;
- состав анализируемой среды воздух рабочей зоны по ГОСТ 12.1.005-88;- напряженность магнитного поля не более 40 А/м.
- 1.2.9 Исполнение по защищенности от воздействия окружающей среды по группе C4 ГОСТ 12997-84.
- 1.2.10 Исполнение по устойчивости и прочности к механическим воздействиям по группе Р1 ГОСТ 12997-84.
- 1.2.11 Степень защиты оболочки от проникновения твердых тел (пыли) и влаги согласно ГОСТ 14254-96:- IP53 (блок сенсоров с присоединенными разъемами);- IP50 (блок индикации).
- 1.2.12 Номинальная цена единицы наименьшего разряда приведена в графе 4 таблицы 1.
- 1.2.13 Газоанализатор обеспечивает непосредственный отсчет результатов измерения в цифровой форме с индикацией единиц

- сообщений об ошибках и диалоговый режим при калибровке и обработке критических ситуаций. Предусмотрена индикация на жидкокристаллическом индикаторе разряда аккумуляторной батареи.
- 1.2.15 Время прогрева газоанализатора не более 15 мин. (группа П2 по ГОСТ 13320-81).
- 1.2.16 Питание газоанализатора производится от встроенных аккумуляторов: от четырех элементов NiMH 4*1,2= 4,8 В емкостью 1,6 Ач, расположенных в блоке сенсоров.
- 1.2.17 Потребляемая мощность: не более 0,8 ВА.
- 1.2.18 Длина соединительного кабеля между блоками 10 м. По запросу потребителя может быть увеличена до длины, при которой электрические параметры кабеля не превышают допустимых значений:
 - суммарное сопротивление постоянному току проводов линии связи между блоком сенсоров и блоком индикации
 - -7 Om;
 - электрическая емкость 0,4 мкФ;
 - индуктивность 2,0 мГн.
- 5.6 Претензии заведомо не принимаются в следующих случаях:
 - 5.6.1 При внешних повреждениях блоков, разъемов и кабелей.
 - 5.6.2 При загрязнении чувствительных элементов блоков датчиков или коррозии чувствительных элементов.
 - $_{12}$ 5.6.3 При наличии следов несанкционированного вскрытия блоков. ЛШЮГ 60-00.000
 - 5.6.4 При выгорании выходных цепей вследствие недопустимых электрических перегрузок.
 - 5.6.5 При нарушении комплектности.

4 ХРАНЕНИЕ И ТРАНСПОРТИРОВАНИЕ

- 4.1 Газоанализаторы должны храниться в упаковке у потребителя в закрытых помещениях в условиях хранения I согласно ГОСТ 15150-69.
- 4.2 Воздух в помещениях не должен содержать вредных примесей, вызывающих коррозию материалов и разрушающих изоляцию.
- 4.3 Размещение газоанализаторов в хранилищах должно обеспечивать их свободное перемещение и доступ к ним. Расстояние между отопительными устройствами хранилищ и газоанализаторами должно быть не менее 0,5 м.
- 4.4 Транспортирование газоанализаторов производится всеми видами транспорта в крытых транспортных средствах по условиям хранения I согласно ГОСТ 15150-69 при температуре от минус 50° до плюс 50° С.
- 4.5 При транспортировании самолетом газоанализаторы должны быть размещены в отапливаемых герметизированных отсеках.
- 4.6 Не допускается перевозка газоанализаторов в транспортных средствах, перевозящих активно действующие химикаты, а также с наличием цементной и угольной пыли.
- 4.7 Во время погрузо-разгрузочных работ и транспортирования коробки (или транспортные пакеты) не должны подвергаться резким ударам и воздействию атмосферных осадков.
- 4.8 Размещение и крепление коробок в транспортных средствах должна исключать их перемещение в пути следования, возможность ударов друг о друга, а также о стенки транспортных средств.

- 1.2.20 Габаритные размеры блоков газоанализаторов не превышают:
 - блока сенсоров, не более 350 * 70 * 45 мм;
 - блока индикации, не более 115 * 75 * 25 мм;
 - блок питания (зарядное устройство) 100 * 60 * 60 мм.
- 1.2.21 Масса блоков газоанализатора не превышает:
 - блока сенсоров, не более, 600 г;
 - блока индикации, не более 300 г.
- 1.2.22 Корпуса блоков сенсоров и блоков индикации (для переносного исполнения) изготавливаются из алюминиевого сплава с содержанием магния не более 7.5%.
- 1.2.23 Наработка на отказ газоанализатора 15000 ч (без учета ресурса сенсоров и аккумуляторов).
- 1.2.24 Средний срок службы газоанализатора 10 лет (без учета ресурса сенсоров и аккумуляторов).
- 1.2.25 Межповерочный интервал 1 год.

1.3 Состав

Таблица 2 Состав газоанализатора

Обозначение	Наименование и условное	Кол.,
	обозначение	ШТ.
ЛШЮГ.43-15.000	Блок датчиков с элементами	1*
(ЛШЮГ.43М-15.000)	искрозащиты.	
, ,		
ЛШЮГ60-01.000	Блок индикации,	1
	исполнение В	
ЛШЮГ 6.640.003	Кабель соединительный 10м	1**

Примечания:

- 1) * Чувствительные элементы датчика в соответствии с запросом потребителя.
- 2) ** Кабель подключен к блоку индикации. Конфигурация конкретного газоанализатора приводится в Приложении А настоящего руководства: количество каналов измерения, перечень анализируемых газов, диапазонов измерения, установленных порогов срабатывания и т.д.

1.4 Устройство и работа

1.4.1 Принцип работы

Принцип действия газоанализатора основан на измерении токов электрохимических или термокаталитических (при измерении содержания суммы горючих газов) чувствительных элементов (сенсоров). Ток сенсора пропорционален парциальному давлению измеряемого им газа в воздухе. Типы применяемых сенсоров определяются газами, подлежащими контролю.

1.4.2 Сигналы чувствительных элементов (сенсоров), расположенных в датчике (блоке сенсоров), подаются на входы усилителей, осуществляющих преобразование, усиление и согласование с АЦП. Выходной сигнал АЦП преобразуется в совместимый с RS232 и подается на контакт 3 разьема РС7 «К БИ». Управление режимами работы блока сенсоров осуществляется по RS232 совместимому цифровому входу – контакт 4 разъема РС7 «К БИ». Считывание данных и управление работой блока сенсоров в неопасных зонах

- 3.2 Меры безопасности при обслуживании
- 3.2.1 Ремонт блоков питания (зарядных устройств) переносных газоанализаторов должен производиться при отключении питания.
- 3.2.2 Рабочее помещение, в котором проводят настройку, испытания и поверку газоанализатора, должно быть оборудовано приточно-вытяжной вентиляцией.

 $A_{\text{дей}}$ - действительное содержание определяемого компонента в ПГС, мкг/м 3 , мг/м 3 (или об.%, или мг/л).

Если $\delta \leq 25\%$; а для каналов измерения кислорода $\Delta \leq 0,05 A_{\text{дей}}+0,2\%$ об., то газоанализатор можно продолжать использовать без регулировки чувствительности. Если погрешность какого-либо канала измерения выходит за указанные пределы, то следует произвести калибровку чувствительности этого канала согласно указаниям "Инструкции по калибровке" или направить газоанализатор на предприятие-изготовитель для калибровки.

Рекомендуемая периодичность проверки 1 раз в три месяца.

- может осуществляться устройствами, поддерживающими интерфейс RS232, например, компьютером. Во взрывоопасных зонах может использоваться блок индикации ЛШЮГ60-01.000.
- 1.4.3 Для включения блока сенсоров необходимо замкнуть контакты 2 и 5 разъема РС7 "К БИ".
- 1.4.4 Блок сенсоров питается от встроенных аккумуляторов. Для зарядки аккумуляторов на блоке сенсоров установлен разъем РС4 "К ЗУ".
- 1.4.5 В блоке сенсоров имеются предусмотренные ГОСТ Р 51330.10-99 элементы искрозащиты, ограничивающие напряжение холостого хода на контактах разъема РС7 "К БИ" и ток короткого замыкания через эти контакты.
- 1.4.6 Блок индикации не имеет встроенного питания и питается от блока сенсоров.
- 1.4.7 В блоке индикации, подключенном к блоку датчика, результат измерения и служебные сообщения выводятся на знакосинтезирующий дисплей. Для сигнализации превышения заданных порогов загазованности в блоке индикации имеется звуковая и световая сигнализации. Управление режимами работы газоанализатора осуществляется с помощью кнопок, расположенных на лицевой панели блока индикации.
- 1.4.8 После включения питания газоанализатор работает в режиме непрерывного измерения контролируемых газов. Результат измерения первого канала измерения выводится на дисплей сразу после включения питания и окончания прогрева

- (измеряемые газы и соответствующие им номера каналов указаны в приложении А).
- 1.4.9 Переключение просматриваемого канала производится нажатием любой стрелочной кнопки (формула газа и результат измерения индицируется на дисплее).
- 1.4.10 При превышении заданного порогового уровня загазованности по токсичному или горючему газу или при снижении содержания кислорода ниже порогового уровня, независимо от текущего просматриваемого канала, включается звуковая и световая сигнализация. Максимальное число пороговых уровней три.
- 1.4.11 В газоанализаторе имеется схема контроля разряда аккумулятора, которая сигнализирует об уменьшении напряжения питания ниже допустимого уровня. В зависимости от степени разряда аккумулятора, индикация разряда и работа каналов измерения осуществляется следующим образом. Аккумулятор полностью заряжен. Работают все каналы измерения. Индикация разряда на дисплей блока индикации не выводится. Заряд аккумулятора составляет примерно 10% емкости. При просмотре показаний всех каналов на дисплей выводится мигающий символ «А». Работают все каналы измерения. Заряд аккумулятора составляет примерно 1% емкости. При просмотре показаний каналов измерения кислорода и токсичного газа на дисплей выводится мигающий символ «А». Канал измерения горючих газов выключен. При просмотре показаний канала горючих газов на дисплей

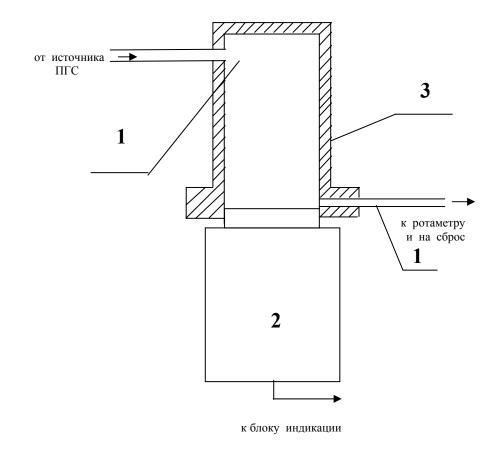


Рис. 3.1. Подача ПГС в адаптер при проверках $1- {\rm соединительные\ трубки;\ } 2- {\rm блок\ датчиков;\ } 3- {\rm адаптер}$ Основную относительную (для кислорода – абсолютную) погрешность находят по формулам:

$$\delta = 100 \frac{A_{\text{изм}} - A_{\text{дей}}}{A_{\text{дей}}}$$

$$\Delta = A_{\text{изм}} - A_{\text{дей}}$$
(1)

где $A_{\text{изм}}$ - показания газоанализатора, мкг/м³, мг/м³ (или об.%, или мг/л);

Таблица 6. Рекомендуемые газовые смеси для проверок чувствительности

Определяемый компонент	Рекомендуемая газовая смесь
Определяемый компонент	т скомендуемая газовая смесь
	(ПГС N5)
	,
Оксид углерода СО	$(115\pm^{5}_{10}) \text{ мг/м}^{3}$
Сероводород H ₂ S	$(27,0\pm2,5)$ мг/м ³
Диоксид серы SO ₂	$(95\pm^{5}_{9}) \text{ M}\Gamma/\text{M}^{3}$
Хлор Cl ₂	$(23.8\pm^{1.2}_{2.4}) \text{ MG/M}^3$
Φ тор F_2	$(23.8\pm^{1.2}_{2.4}) \text{ M}\Gamma/\text{M}^3$ $(0.144\pm^{0.006}_{0.012}) \text{ M}\Gamma/\text{M}^3$
Фтористый водород HF	$(2,9\pm^{0,1}_{0,25}) \text{ M}\Gamma/\text{M}^3$
Аммиак NH ₃	$(2,9\pm^{0,1}_{0,25}) \text{ M}\Gamma/\text{M}^3$ $(570\pm^{29}_{58}) \text{ M}\Gamma/\text{M}^3$
Озон	$(480\pm^{20}_{40})$ мкг/м ³
Диоксид углерода СО2	(4,75± ^{0,25} _{0,5}) oб.%, № 3772-87
Метан СН ₄	(2,1±0,10) oб.%, № 3907-87
Пропан С ₃ Н ₈	(0,81±0,04) oб.%, № 3970-87
Гексан С ₆ Н ₁₄	(0,48± ^{0,01} _{-0,05}) oб.%, № 5322-90
Водород Н2	(1,91±0,09) oб.%, № 4268-88
Оксид углерода СО	(5,2±0,25) об.%, № 3838-87, и ген-р
	ГР03М
Кислород О2	(28,5± ^{1,5} _{-2,9}) oб.%, № 3726-87

Примечания:

- 1) ПГС на основе CO, H_2S , SO_2 в воздухе получают с использованием генератора ГР03М в комплекте с ГСО-ПГС;
- 2) ПГС на основе хлора в воздухе с использованием генератора ГХ-120;
- 3) ПГС на основе HF в воздухе с использованием установки "Микрогаз" в комплекте с ИМ-НF;
- 4) ПГС на основе F_2 в воздухе с использованием генератора с контролем массовой концентрации F_2 в ПГС с помощью МВИ.
- 5) Концентрация гексана C, об. %, пересчитывается в C, мг/л, по формуле:

 $C_{M\Gamma/\Pi} = C_{o6.\%} 12,05*86/28.95 = 40 C_{o6.\%}$

ПГС на основе O_3 в воздухе – с использованием генератора озона ГС-024-1 ИРМБ.413332.001 ТУ

выводится сообщение «Акк. разряжен». Аккумулятор полностью разряжен. Все каналы выключены. На дисплей выводится сообщение «Акк. разряжен».

- 1.4.12 Периодичность подзарядки аккумуляторов при хранении указана в приложении A.
- 1.4.13 Конструктивно газоанализатор состоит из блока датчиков и блока индикации, соединенных кабелем. Блоки размещены в малогабаритных корпусах.
- 1.4.14 Расположение и назначение органов управления, подключения и индикации с указанием их маркировок на приборе приведено в таблице 3.

Таблица 3

Разъем и №№ контактов	Назначение		
Блок сенсоров			
Вилка РС-4 "К ЗУ"			
1	Положительный вывод зарядного		
	устройства		
2	Общий провод		
Вилка РС-7 "К БИ"			
1	Положительный вывод питания		
	блока индикации		
2	Общий провод		
3	Цифровой выход		
4	Цифровой вход		
5	Сигнал включения		
Лицевая па	нель блока индикации		
Дисплей	Индикация результатов измерения,		
	вывод сообщений и служебной		
	информации		
Красный светодиод "!" (в	Индикация загазованности выше		
треугольной рамке) - (под	порогового уровня. Для кислорода -		

светодиодом указаны	снижение содержания ниже		
формулы газов и	порогового уровня.		
пороговые уровни *)			
Кнопка «Вкл.»	Включение газоанализатора		
Кнопка «Ввод»	Выключение газоанализатора, вывод		
	на дисплей главного меню, выбор		
	пункта меню, запись введенных		
	данных в память газоанализатора		

Продолжение таблицы 3

Выход из главного меню в основной	
режим работы, выход из текущего	
пункта меню	
Переключение индицируемых на	
дисплее каналов – в основном	
режиме работы. При работе с меню:	
перемещение курсора по строке	
дисплея (если он индицируется)	
Переключение индицируемых на	
дисплее каналов – в основном	
режиме работы. При работе с меню:	
перемещение по пунктам меню или	
изменение цифры в позиции курсора	
Подключение к блоку сенсоров	
(вилка РС7 "К БИ")	

^{*)} Примечание. Для токсичных компонентов: величина порогового уровня в ПДК (может быть указано значение в мг/м 3 , для озона в мкг/м 3), для кислорода - значение в об. %, для горючих газов – в об. % или в % НКПР, для гексана – в мг/л.

1.4.15 В конструкцию и схему газоанализатора могут быть внесены изменения, не влияющие на его технические характеристики.

3. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

- 3.1. Общие указания
- 3.1.1. **Техническое обслуживание** газоанализатора **заключается** в периодических осмотрах и проверке технического состояния.
- 3.1.2. При периодических осмотрах необходимо проверять:
 - целостность оболочек блоков, отсутствие на них коррозии и других повреждений;
 - наличие всех крепежных деталей и их элементов;
 - наличие и целостность пломб;
 - наличие маркировки взрывозащиты;
 - состояние кабельных разъемов: кабель не должен выдергиваться и не должен проворачиваться в узле уплотнения.
- 3.1.3. Эксплуатация газоанализатора с повреждениями и другими неисправностями категорически запрещается.
- 3.1.4. Газоанализатор должен подвергаться ежегодной периодической поверке по методике утвержденной Госстандартом РФ.
- 3.1.5. В связи с естественным старением сенсоров желательно периодически проверять чувствительность каналов измерения по поверочным газовым смесям (ПГС №5 согласно Методики поверки), приведенным в табл. 5. Смеси подаются с расходом 0,3 0,5 л/мин через адаптер, как показано на рис. 3.1.

2.5. Возможные неисправности и способы их устранения

2.5.1.В процессе эксплуатации могут наблюдаться неисправности, представленные в таблице 5.

Таблица 5

Наименование неисправности,	Вероятная	Метод устранения
внешнее проявление и	причина	
дополнительные		
признаки		
1. При включении	Разряжены	Зарядить аккумуляторы
газоанализатора не	аккумулятор	
выводится информация	Ы	
на цифровой дисплей		
2. При включении в	Неисправен	заменить сенсор на
незагазованной зоне не	сенсор	предприятии -
удается установить		изготовителе
нулевые показания		
3. На дисплей	_	Отсоединить кабель от
выводится сообщение	_	датчика и любым
«Сбой в линии связи»,		металлическим предметом
газоанализатор не		на 1-2 секунды замкнуть
реагирует на нажатие		контакты 1 и 2 на разъёме
кнопок		«К БИ» (два ближайших
		контакта к ключу разъема)

1.5 Маркировка

Маркировка соответствует ГОСТ 26828-86 и чертежам предприятия – изготовителя.

Маркировка органов управления, индикации и коммутации приведена в Таблице 3.

- 1.5.1 Блок индикации
- 1.5.1.1 На лицевой стенке блока индикации нанесены надписи:
- "ГАЗОАНАЛИЗАТОР "Хоббит-Т";
- знак утверждения типа в соответствии с ПР 50.2.009-94;
- наименование предприятия-изготовителя.
- 1.5.1.2 На задней панели блока индикации укреплена табличка, на которой нанесены:
- «БЛОК ИНДИКАЦИИ»;
- «ExibIIBT6»;
- наименование предприятия-изготовителя;
- обозначение ТУ;
- относительная погрешность измерения;
- значения установленных порогов срабатывания с допусками не более половины основной погрешности;
- номер газоанализатора по системе нумерации предприятияизготовителя;
- год (или последние две цифры) и квартал изготовления.

1.5.2 Блок датчиков

- 1.5.2.1 На боковой поверхности корпуса блока сенсоров нанесены надписи:
- «ExibIIBT6» (в соответствии с п.3.6 ГОСТ 12.2.020-76);
- «Блок сенсоров»;
- «ХОББИТ-ТВ зав. №____»;
- «формулы измеряемых газов»;
- «во взрывоопасной зоне не заряжать»;
- 1.5.3 Зарядное устройство
- 1.5.3.1 На блоке питания (зарядном устройстве) БПУ-6 укреплена табличка, на которой нанесены:
- наименование блока питания «БПУ-6»;
- наименование предприятия-изготовителя;
- знак соответствия системы сертификации ГОСТ Р;
- параметры питающей сети и ток потребления блока "220В, 50 Γ ц, 0.01А".

при разряде аккумулятора. Основным энергопотребителем является сенсор горючих газов. Поэтому, в зависимости от степени разряда аккумулятора, индикация разряда и работа каналов измерения осуществляется как описано в п.1.4. При появлении мигающего знака "А" и надписи «Акк. разряжен» при просмотре показаний канала горючих газов необходимо зарядить аккумулятор.

- 2.4.7. Проконтролировать напряжение аккумулятора можно через пункт главного меню «Аккумулятор»:
- 2.4.8. Для входа в главное меню нажать кнопку «Ввод».
- 2.4.9.С помощью кнопки «▼» установить курсор на пункт меню «Аккумулятор» и нажать кнопку «Ввод» на дисплей выводится напряжение аккумулятора.
- 2.4.10. Для выхода в основной режим работы два раза нажать кнопку «Сброс».
- 2.4.11. После проведения измерений выключить газоанализатор:

2.4.Порядок работы

- 2.4.1. Подготовить газоанализатор согласно п.2.3.
- 2.4.2. Если измерения требуется провести в канализационном колодце, подвале и т.п. до спуска работающего персонала в эти помещения, то размотать кабель, соединяющий блок датчиков и блок индикации.
- 2.4.3. Включить газоанализатор. Блок датчиков поместить в объект, в котором необходимо провести измерение.
- 2.4.4. Порядок снятия показаний и работа органов сигнализации.
- 2.4.5. Все каналы газоанализатора работают в непрерывном режиме. На дисплей после включения и прогрева выводится формула газа, измеряемого первым каналом, и результат измерения. Вывод на дисплей показаний следующих каналов производится нажатием любой «стрелочной» кнопки. Очередность снятия показаний каналов газоанализатора может быть произвольной и определяется оператором. Снятие показаний газоанализатора должно производиться после Звуковая показаний. установления светодиодная сигнализация превышения пороговых уровней загазованности снижения концентрации кислорода включается независимо от того, показания какого канала выводятся на дисплей в данный момент. После проведения измерений выключить газоанализатор: нажать кнопку «Ввод» два раза.
- 2.4.6. Индикация разряда аккумулятора и работа каналов измерения

- 1.5.6 Способ и качество выполнения надписей и обозначений обеспечивают их четкое и ясное изображение в течение срока службы.
- 1.5.7 Транспортная маркировка выполнена черной несмывающейся краской в соответствии с требованиями ГОСТ 14192-96 и содержит надписи:
- основные наименование пункта назначения и наименование грузополучателя;
- дополнительные наименование грузоотправителя;
- информационные надписи масса нетто и брутто грузового места;
- манипуляционные знаки означающие "Верх", "Беречь от влаги", Хрупкое, осторожно".
- 1.6 Упаковка и консервация
- 1.6.1 Газоанализаторы упакованы в коробки из жесткого картона, обеспечивающие сохранность газоанализаторов при транспортировании и хранении.
- 1.6.2 Газоанализаторы и его принадлежности подвергнуты временной противокоррозионной защите в соответствии с ГОСТ 9.014-78 (группа III-1): вариант временной противокоррозионной защиты ВЗ-10, вариант внутренней упаковки ВУ-5.

- 1.6.3 По защите изделия от климатических факторов внешней среды упаковка газоанализатора соответствует категории КУ-3 по ГОСТ 23170-78.
- 1.6.4 В качестве упаковочного амортизирующего материала использован картон гофрированный по ГОСТ 7376-84.
- 1.6.5 Руководство по эксплуатации, ЗИП упакованы в герметичные полиэтиленовые пакеты по ГОСТ 10354-82 и вложены в транспортную тару.
- 1.6.6 В транспортную тару вложен упаковочный лист, содержащий следующие сведения:
 - наименование и обозначение упакованного газоанализатора;
 - количество упакованных изделий;
 - дату упаковывания;
 - фамилию, инициалы, подпись, штамп ответственного за упаковывание;
 - штамп ОТК.
- 1.6.7 Срок защиты без переконсервации 1 год.
- 1.7 Комплектность

Таблица 4 – Комплект поставки

№ пп	Наименование	К-во, шт.
1	Газоанализатор	1

«Выполнено!». Дважды нажать кнопку «Сброс» - выйти из меню установки нулевых показаний в основной режим работы. Повторить действия по п. 2.3.3.2. Проверка и регулировка нулевых показаний завершены.

2.3.4. Газоанализатор готов к работе.

- 2.3.2.2.Зарядное устройство подключить к разъему на торцевой стенке датчика (блока сенсоров). Время заряда полностью разряженных аккумуляторов составляет примерно 15 часов.
- 2.3.3. Проверка и регулировка нулевых показаний каналов.
 - 2.3.3.1. Включить газоанализатор кнопкой «Вкл». Дать газоанализатору прогреться. На дисплей выводятся показания первого канала канала измерения кислорода. Если канал измерения кислорода отсутствует в газоанализаторе, то выводятся показания канала измерения токсичного газа. Вывод на дисплей показаний следующего канала производится по нажатию любой «стрелочной» кнопки: «◄», «▶», «♠» или «▼».
 - 2.3.3.2. Убедиться, что на атмосферном воздухе показания канала измерения кислорода равны **21±1 %6**. Показания канала измерения токсичного газа должны находиться в диапазоне от 0±0.1 мг/м3, указанного в приложении 1. Показания газоанализатора для канала измерения горючего газа должны находиться в диапазоне от 0 до 0.01 % об.
 - 2.3.3.3. Ели показания отличаются от требований п.2.3.3.2, то установить требуемые показания. Для этого нажать кнопку «Ввод» на дисплей будут выведены пункты главного меню. С помощью кнопки «▼» установить курсор на пункт главного меню «Установка нуля» и нажать кнопку «Ввод». Г/а установит нулевые показания. По окончании установки нулевых показаний на дисплей будет выведено сообщение

2	Блок питания БПУ-6	1
3	Руководство по эксплуатации	1
4	Методика поверки	*

Примечание- * по запросу заказчика.

- 2. ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ
- 2.1. Требования безопасности
- 2.1.1. Датчики имеют уровень взрывозащиты «взрывобезопасный», обеспечиваемый видом взрывозащиты «искробезопасная электрическая цепь» и соответствуют по взрывозащищенности ГОСТ Р 51330.10-99 и ГОСТ Р 51330.0-99.
 - Маркировка взрывозащиты:
 - блоки сенсора ExibIIBT6 (в комплекте «Хоббит-ТВ»);
 - блок индикации ExibIIBT6 (в комплекте "Хоббит-ТВ").
- 2.1.2. Степень защиты оболочкой по ГОСТ 14254-96:
 - IP-53 (блок сенсора с присоединенным разъемом),
 - ІР-50 (блок индикации).
- 2.1.3. Температура наружной поверхности блока сенсоров не превышает 85° С при температуре окружающей среды 40° С.
- 2.1.4. Параметры пятипроводной линии связи не должны превышать:
 - сопротивление постоянному току проводов линии связи
 - -7 Om;
 - электрическая емкость 0,4 мкФ;
 - индуктивность 2,0 мГн.
- 2.1.5. Электрические параметры блока искрозащиты исполнения В:

- напряжение холостого хода 3,7 В;
- ток короткого замыкания 130мА.
- 2.1.6. Газоанализатор не является источником пожара, агрессивных и токсичных выделений.
- 2.1.7. Блок питания переносного газоанализатора соответствуют требованиям безопасности ГОСТ 12.2.007.0-75 и ГОСТ Р 51350-99.
- 2.1.8. Ремонт блоков питания переносных газоанализаторов производить только при отключенном питании.
 - 2.2. Эксплуатационные ограничения
- 2.2.1.В месте использования датчика не должно быть сильных потоков воздуха (ветра, сквозняков, вентиляционных потоков). При наличии таковых для ослабления помех необходимо предпринять меры защиты от потоков воздуха. При работе с переносными газоанализаторами для ослабления помех необходимо располагать датчик чувствительным элементом по ветру.
 - 2.3. Подготовка газоанализаторов к работе
- 2.3.1. Извлечь газоанализатор из упаковки.
- 2.3.2. Проверка состояния аккумуляторов.
 - 2.3.2.1. Включить газоанализатор. Если на табло выводится индикация разряда аккумулятора, то необходимо при помощи зарядного устройства зарядить аккумуляторную батарею. Если аккумуляторы полностью разряжены, то при включении газоанализатора индикация на дисплее отсутствует.