термометр многоканальный ТМ 5103

Руководство по эксплуатации НКГЖ.405546.001-06РЭ

СОДЕРЖАНИЕ

1. Введение	3
2. Описание и работа	3
2.1. Назначение изделия	3
2.2. Технические характеристики	4
2.3. Устройство и работа	7
2.4. Сообщения об ошибках	11
2.5. Маркировка и пломбирование	12
2.6. Упаковка	12
3. Использование изделия по назначению	12
3.1. Подготовка изделия к использованию	12
3.2. Использование изделия	13
4. Методика поверки	14
5. Техническое обслуживание	17
6. Хранение	18
7. Транспортирование	18
ПРИЛОЖЕНИЯ: А. Схема электрическая	
соединений ТМ 5103	19

Б.	Схема подключения	
	TM 5103 K 3RM	21

1. ВВЕДЕНИЕ

1.1. Руководство по эксплуатации содержит сведения о конструкции, принципе действия, характеристиках термометра многоканального ТМ 5103 (далее – ТМ) и указания, необходимые для правильной и безопасной эксплуатации термометра.

2. ОПИСАНИЕ И РАБОТА

2.1. Назначение изделия

2.1.1. ТМ предназначен для измерения и контроля температуры и других неэлектрических величин, преобразованных в электрические сигналы силы и напряжения постоянного тока или активное сопротивление постоянному току.

ТМ используется в различных технологических процессах в промышленности и сельском хозяйстве.

2.1.2. ТМ является многофункциональным микропроцессорным прибором и предназначен для функционирования как в автономном режиме, так и под управлением компьютерной программы через последовательный интерфейс.

Измерительные каналы ТМ предназначены для конфигурации с унифицированными входными электрическими сигналами в виде постоянного тока 0...5, 0...20 или 4...20 мА, с термопреобразователями сопротивления (ТС) и преобразователями термоэлектрическими (ТП), а также для измерения напряжения постоянного тока до 100 мВ и сопротивления постоянному току до 320 Ом.

Зависимость измеряемой величины от входного сигнала ТМ может быть линейная, с функцией усреднения (демпфирования), а для входного унифицированного сигнала также и с функцией извлечения квадратного корня.

ТМ осуществляет функцию сигнализации и автоматического регулирования контролируемых параметров.

Процедура изменения уставок защищена от несанкционированного доступа.

2.1.3. ТМ имеет восемь измерительных каналов и восемь каналов управления (коммутации) электрическими цепями (реле).

ТМ является щитовым - по конструктивному исполнению.

2.1.4. В соответствии с ГОСТ 12997-84:

по устойчивости к климатическим воздействиям при эксплуатации ТМ соответствует группе исполнения С3;

по устойчивости к механическим воздействиям при эксплуатации TM соответствует группе исполнения LX.

- 2.1.5. В соответствии с ГОСТ 14254-96 степень защиты от попадания внутрь ТМ твердых тел, пыли и воды для:
 - передней панели IP54;корпуса IP20.
 - 2.2. Технические характеристики
- 2.2.1. Диапазоны измерений, входные параметры и пределы допускаемых основных приведенных погрешностей измеряемых величин относительно HCX с учетом конфигураций измерительных каналов ТМ приведены в таблицах 2.1 и 2.2.

Основная приведенная погрешность по компьютерному каналу не превышает основную приведенную погрешность измеряемых величин.

- 2.2.2. Время установления рабочего режима не более 30 мин.
- 2.2.3. Предел допускаемой дополнительной погрешности ТМ, вызванной изменением температуры окружающего воздуха от нормальной (20±5) °C до любой температуры в пределах (минус 10...+50) °C на каждые 10 °C изменения температуры, не превышает 0,5 предела допускаемой основной погрешности.
- 2.2.4. Предел допускаемой дополнительной погрешности ТМ для конфигурации с ТП, вызванной изменением температуры их свободных концов в диапазоне (минус 10...+50) °C, не превышает предела допускаемой основной погрешности.

- 2.2.5. Предел допускаемой дополнительной погрешности ТМ, вызванной воздействием повышенной влажности (до 95% при 35°С), не превышает 0,5 предела допускаемой основной погрешности.
- 2.2.6. Предел допускаемой дополнительной погрешности, вызванной изменением напряжения питания от номинального (220 В) в пределах (187...242) В, не превышает 0,5 предела допускаемой основной погрешности.

Таблица 2.1

Входные параметры				Пределы		
					DI	•
Тип пер-		П	по НСХ		D	допускаемой
вичного		Диапазон			Входное	основной
преобразо-	W_{100}	измерений,	сопротивление,	т.э.д.с.,	сопро-	приведенной
вателя		°C	Ом	мВ	тивление,	погрешности
Бателя			ОМ	MD	кОм	относительно
						HCX, %
50M	1 4200		39,2392,78			
100M	1,4280		78,45185,55			
50M	1,4260	-50+200	39,3592,62			
100M	1,4200		78,69185,23	-	-	±(0,25+*)
50П	1,3910 -50+600	10 50 ±600	40,00158,59			
100Π	1,3910	-301000	80,00317,17			
Pt100	1,3850	-200+600	18,52313,71			
ТЖК (Ј)		0+1200		069,536	не	
TXK (L)		0+800		066,469	менее	
TXA (K)	-	0+1300	-	052,398	100	$\pm (0,5 + *)$
ТПП (S)		0+1700		017,942		
TBP(A-1)		0+2500		033,638		

Таблица 2.2

1 woviniqu = 1=				
Измеряемая	Диапазон	Входные параметры	Пределы	

величина	измерений	Сопротивление, МОм, не менее	Напряже- ние, мВ, не более	Максимальный ток через измеряемое сопротивление, мА	допускаемой основной приведенной погрешности, %
Напряже- ние, мВ	0100 075	0,1	-	-	
Ток, мА	020 420 05	-	400	-	±(0,25 +*)
Сопротив-	0320	-	-	1,3	

- * Одна единица последнего разряда, выраженная в процентах от диапазона измерений.
- 2.2.7. Предел допускаемой дополнительной погрешности ТМ, вызванной воздействием постоянных магнитных полей и (или) переменных полей сетевой частоты напряженностью до 400 А/м, не превышает 0,5 предела допускаемой основной погрешности.
- 2.2.8. Предел допускаемой дополнительной погрешности ТМ во время воздействия вибрации не превышает предела допускаемой основной погрешности.
 - 2.2.9. Область задания уставок соответствует диапазону измерений.
- 2.2.10. Предел допускаемой основной погрешности срабатывания сигнализации не превышает последнего индицируемого разряда измеренного значения.
 - 2.2.11. Исполнительные реле каналов сигнализации обеспечивают коммутацию:
 - переменного тока сетевой частоты:
 - при напряжении 250 В до 5 А на активную нагрузку,

- при напряжении 250 В до 2 А на индуктивную нагрузку $(\cos \varphi \ge 0,4)$;
- постоянного тока:
- при напряжении 250 В до 0,1 А на активную и индуктивную нагрузки,
- при напряжении 30 B до 2 A на активную и индуктивную нагрузки.

Примечание. При индуктивной нагрузке рекомендуется установка искрогасящих цепочек на клеммы прибора или на саму индуктивную нагрузку. Искрогасящая цепочка должна состоять из последовательно соединенных резистора 50...100 Ом, 0,5 Вт и конденсатора 10...100 нФ на напряжение не менее 630 В.

- 2.2.12. Питание TM осуществляется от сети переменного тока с частотой (50 \pm 1) Гц и напряжением (220 $^{+22}_{-33}$) В.
- 2.2.13. Мощность, потребляемая TM от сети переменного тока при номинальном напряжении, не превышает 20 B·A.
- 2.2.14. Изоляция электрических цепей ТМ между измерительными каналами и относительно клеммы заземления должна выдерживать в течение 1 мин действие испытательного напряжения практически синусоидальной формы частотой от 45 до 65 Гц:
 - при нормальных условиях 100 В и 1500 В соответственно;
 - при температуре окружающего воздуха (35 \pm 3) °C и относительной влажности (95 \pm 3) % 60 В и 900 В соответственно.
- 2.2.15. Электрическое сопротивление изоляции токоведущих цепей ТМ относительно его корпуса и между собой не менее:
 - 20 МОм при температуре окружающего воздуха (20 ± 5) °C и относительной влажности от 30 % до 80 %;
 - 5 МОм при температуре окружающего воздуха (50±3) °C и относительной влажности от 30 % до 80 %;

- 1 МОм при относительной влажности (95 \pm 3) % и температуре окружающего воздуха (35 \pm 3) °C.
- 2.2.16. ТМ устойчив к воздействию температуры окружающего воздуха от минус 10 °C до +50 °C.
- 2.2.17. Габаритные размеры, мм, не более:

передняя панель -96×96 ; монтажная глубина -180; вырез в щите -86×86 . 2.2.18. Масса, кг, не более: 1,5.

2.3. Устройство и работа

2.3.1. В состав ТМ входят:

- трансформаторный блок питания с линейными стабилизаторами;
- импульсный блок питания с линейными стабилизаторами;
- восемь гальванически развязанных входных усилителей;
- двухзвенный RC-фильтр (на каждом канале);
- модуль аналого-цифрового преобразователя (АЦП);
- микропроцессорный блок управления;
- модуль индикации с клавиатурой управления;
- восемь исполнительных реле;
- модуль клеммных колодок для внешних соединений;
- модуль интерфейса;
- 2.3.1.1. Трансформаторный блок питания преобразует сетевое напряжение $220 \, \mathrm{B}$ частотой $50 \, \Gamma\mathrm{u}$ в постоянные стабилизированные напряжения $\pm 5 \, \mathrm{B}$, $\pm 8 \, \mathrm{B}$ для питания микропроцессора, интерфейса, АЦП, и нестабилизированные напряжения $+10 \, \mathrm{B}$ и $+24 \, \mathrm{B}$ для питания импульсного блока питания и блока реле. Выключение питания не предусмотрено, так как TM предназначены для работы в непрерывном режиме.
- 2.3.1.2. Импульсный блок питания преобразует нестабилизированное напряжение $+10~\mathrm{B}$ в стабилизированные $8~\mathrm{nap}$ напряжений $\pm 5~\mathrm{B}$ для питания входных усилителей.

- 2.3.1.3. Входные усилители усиливают входные сигналы и тестируют цепи для определения обрыва датчика.
 - 2.3.1.4. Двухзвенный RC-фильтр обеспечивает высокую помехоустойчивость ТМ.
- 2.3.1.5. Аналого-цифровой преобразователь преобразует входной аналоговый сигнал в код, поступающий в микропроцессорный блок управления.
 - 2.3.1.6. Микропроцессорный блок управления выполняет следующие функции:
 - рассчитывает текущее значение измеряемой величины (по данным опроса АЦП);
 - управляет модулем индикации, т.е. выводит текущее значение измеряемой величины или значение уставки на индикатор;
 - опрашивает клавиатуру;
 - управляет модулем интерфейса.

2.3.1.7.В модуль индикации и клавиатуры входят:

- светодиодный четырехразрядный индикатор измеряемой величины или уставки;
- светодиодный одноразрядный индикатор номера канала;
- восемь одиночных индикаторов состояния реле;
- четыре одиночных индикатора режимов индикации;
- по одному одиночному индикатору: индикатор ввода пароля и индикатор редактирования уставок;
- кнопка изменения уставок (скрытая);
- кнопка «>» выбора режима/изменения редактируемого разряда;
- кнопки «^» и «V» увеличения / уменьшения номера канала или изменения редактируемого разряда.
- 2.3.1.8. ТМ имеет по две независимые уставки на каждый измерительный канал, которые могут быть как верхними, так и нижними, и могут быть связаны с любым исполнительным реле.

Исполнительные реле управляются микропроцессором и работают в соответствии с внутренней таблицей связей реле и уставок каналов, которые редактируются пользователем.

2.3.1.9. Модуль интерфейса предназначен для связи ЭВМ. Схемы подключения ТМ к ЭВМ - в соответствии с приложением Б.

2.3.1.10. На рисунке 2.1 представлен внешний вид ТМ 5103.

Рисунок 2.1

2.3.2. На лицевой панели ТМ расположены:

- основное табло – четырехразрядный светодиодный индикатор измеряемой величины или уставки;

- дополнительное табло одноразрядный светодиодный индикатор номера канала;
- кнопки «^» и «V», позволяющие просматривать значения измерений или уставок, увеличивая или уменьшая номер канала;
- клавиша «>», позволяющая выбрать один из четырех режимов индикации:
 - 1) циклический просмотр измерений по всем каналам;
 - 2) просмотр измерений по любому выбранному каналу;
 - 3) просмотр уставки 1 по любому выбранному каналу;
 - 4) просмотр уставки 2 по любому выбранному каналу.
- скрытая кнопка изменения уставок дает пользователю возможность изменить с клавиатуры значения уставок.

Для изменения уставок необходимо нажать и удерживать скрытую кнопку в нажатом состоянии до высвечивания индикатора «ПАРОЛЬ», после чего необходимо с помощью клавиш «>», «^» и «V» ввести пароль (новый пароль устанавливается только с ЭВМ). Если пароль был введен с ошибкой, то ТМ переходит в режим индикации измерений (состояние ТМ после включения питания). Если пароль введен верно, высвечивается индикатор «УСТ» и ТМ переходит в режим редактирования уставок. Для выхода из этого режима нужно нажать скрытую кнопку. Клавиша «>» используется для выбора редактируемого разряда уставки. Клавиши «^» и «V» используются для увеличения / уменьшения либо мигающего редактируемого разряда уставки, либо для изменения номера уставки / канала.

Задание конфигурации ТМ производится только с ЭВМ.

- 2.3.2.1. Основное табло предназначено для отображения числовых значений текущего измеряемого параметра, уставок, а также символьных сообщений о состоянии ТМ (сообщений об ошибках).
 - 2.3.2.2. Дополнительное табло предназначено для отображения номера канала.
- 2.3.2.3. Индикатор «1» отображает состояние реле коммутируемого канала номер 1. Если реле номер 1 включено (замкнуты нормально-разомкнутые контакты), то индикатор «1» высвечивается, если реле выключено (контакты реле размыкают канал), то индикатор «1» не высвечивается. Аналогично работают индикаторы «2» «8» и реле 2-8 соответственно.
 - 2.3.3. На задней панели ТМ расположены:

- клеммные колодки 2 ряда по 12 контактов для подключения термопреобразователей;
- разъем РП 14-30 для подключения сети и внешних исполнительных устройств;
- клемма заземления;
- разъем интерфейса.

Таблица 2.3 - Назначение контактов разъема РП14-30.

Номер группы контактов для подключения реле (внешних	ешних помер	Контакты нормально-	
исполнительных устройств)		замкнутые	разомкнутые
1	1a, 1b, 1c	1b, 1c	1a, 1b
2	2a, 2b, 2c	2b, 2c	2a, 2b
3	3a, 3b, 3c	3b, 3c	3a, 3b
4	4a, 4b, 4c	4b, 4c	4a, 4b
5	5a, 5b, 5c	5b, 5c	5a, 5b
6	6a, 6b, 6c	6b, 6c	6a, 6b
7	7a, 7b, 7c	7b, 7c	7a, 7b
8	8a, 8b, 8c	8b, 8c	8a, 8b

Примечание: Контакты 0а, 0с – для подключения ТМ к сети.

Таблица 2.4 - Соответствие положения микропереключателей на задней панели ТМ различным типам подключаемых первичных преобразователей.

Первичный преобразователь	Положение соответствующего микропереключателя	
или входной сигнал	верхнее (ON)	нижнее

Преобразователь термоэлектрический	2	1, 3, 4
Постоянный ток	1, 2	3, 4
Напряжение постоянного тока	2	1, 3, 4
Термопреобразователь сопротивления:		
• двухпроводная схема подключения	3, 4	1, 2
• трехпроводная схема подключения	4	1, 2, 3

2.4 Сообщения об ошибках

2.4.1. При возникновении в ТМ каких-либо сбоев или неполадок на основном табло высвечивается сообщение об ошибке. Возможные сообщения об ошибках:

«Err 0», «Err 1», «Err 4» - ошибка во внутренней памяти ТМ, причина устраняется только в заводских условиях.

«Err 2» - неправильно установлен сетевой номер или скорость обмена ТМ с ЭВМ.

«Err 5» - нет включенных каналов.

В случае возникновения какой-либо из вышеперечисленных ошибок, ТМ автоматически присваивается: Номер прибора – 0, Скорость обмена – 9600 бод. После устранения причин вызвавших ошибку значения этих параметров восстанавливаются.

«-OU-» - переполнение. На вход измерительного канала подан сигнал больше допустимого.

«-AL-» - обрыв датчика.

«---» - число, которое невозможно вывести на 4-х разрядный индикатор. Рекомендуется уменьшить параметр «Количество знаков после запятой».

- 2.5. Маркировка и пломбирование
- 2.5.1.Маркировка соответствует ГОСТ 26828-86 E, ГОСТ 9181-74 E, ГОСТ 12.2.020-76 и чертежу НКГЖ.405546.001-06СБ.
 - 2.5.2. ТМ опломбирован представителем ОТК предприятия-изго-товителя.
 - 2.6. Упаковка
- 2.6.1. Упаковка производится в соответствии с ГОСТ 23170-78 E, ГОСТ 9181-74 E и чертежом НКГЖ.405546.001-06УЧ и обеспечивает полную сохраняемость ТМ.

3. ИСПОЛЬЗОВАНИЕ ИЗДЕЛИЯ ПО НАЗНАЧЕНИЮ

- 3.1. Подготовка изделия к использованию
- 3.1.1. Указания мер безопасности
- 3.1.1.1. По способу защиты человека от поражения электрическим током ТМ соответствует классу I по ГОСТ 12.2.007.0-75.

ТМ имеет зажим защитного заземления по ГОСТ 12.2.007.0-75.

Перед началом работы необходимо проверить качество заземления.

- 3.1.1.2. Первичные преобразователи подключаются согласно маркировке при отключенном напряжении питания.
- 3.1.1.3. При эксплуатации ТМ необходимо соблюдать требования ГОСТ 12.3.019-80, "Правил технической эксплуатации электроустановок потребителей", "Правил техники безопасности при эксплуатации электроустановок потребителей" и «Правил устройства электроустановок. ПУЭ», утвержденных Госэнергонадзо-

ром, а также руководствоваться указаниями инструкций по технике безопасности, действующих на объектах эксплуатации ТМ.

3.1.2. Внешний осмотр

3.1.2.1. При внешнем осмотре устанавливают отсутствие механических повреждений, правильность маркировки, проверяют комплектность.

При наличии дефектов покрытий, влияющих на работоспособность ТМ, несоответствия комплектности, маркировки определяют возможность дальнейшего применения ТМ.

- 3.1.2.2. У каждого ТМ проверяют наличие формуляра с отметкой ОТК.
- 3.1.3. Монтаж изделия
- 3.1.3.1. Для установки ТМ необходимо иметь доступ к нему с задней стороны щита. Размеры выреза в щите должны соответствовать п. 2.2.17.

Порядок установки:

- вставить ТМ в вырез щита;
- вставить скобы в корпус ТМ;
- винтами притянуть переднюю панель ТМ к щиту.

Электрическая схема соединений ТМ с первичными преобразователями осуществляется через клеммные колодки, расположенные на задней панели, а соединения с сетью и коммутируемыми цепями - через разъем РП 14-30, в соответствии с рисунком А.1 приложения А. Назначение контактов разъема РП14-30 соответствует приведенному в таблице 2.3. Соединения выполняются в виде кабельных связей.

Прокладка и разделка кабеля должны отвечать требованиям действующих "Правил устройства электроустановок. ПУЭ".

На задней панели находится разъем для подключения ЭВМ при помощи интерфейсного кабеля.

3.2. Использование изделия

- 3.2.1. Установить ТМ на приборном щите и надежно закрепить.
- 3.2.2. Осуществить необходимые соединения ТМ в соответствии с приложениями А, Б.
- 3.2.3. Установить микропереключатели на задней панели в соответствии с подключенным термопреобразователем и таблицей 2.4.
- 3.2.4. При необходимости подключить TM к ЭВМ, загрузить программу конфигурации TM, произвести конфигурацию TM.

4. МЕТОДИКА ПОВЕРКИ

4.1. Поверку ТМ проводят органы Государственной метрологической службы или метрологическая служба потребителя, имеющая право поверки. Требования к поверке, порядок, основные этапы проведения поверки определяются ПР 50.2.006-94 "ГСИ. Поверка средств измерений. Организация и порядок проведения" и Рекомендацией "Методика поверки МИ 2342-95".

Межповерочный интервал составляет два года.

- 4.1.1. Основные приведенные погрешности измеряемых величин определяют в соответствии с указаниями, приведенными в п. 5.5 рекомендации (для ТМ с входными сигналами, соответствующими конфигурациям поверяемых ТМ).
- 4.1.2. Типы и НСХ ТС и ТП для ТМ должны соответствовать приведенным в настоящем руководстве и удовлетворять требованиям ГОСТ 6651-94 и ГОСТ Р 8.585-2001 соответственно.
- 4.1.3. Для поверяемых ТМ, НСХ первичного преобразователя и диапазоны (и поддиапазоны) измерений которых соответствуют приведенным в рекомендации, поверяемые точки указаны в таблицах 5, 6 и 7 рекомендации.

Поверяемые точки ТМ с поддиапазонами, отличными от приведенных в рекомендации, рассчитывают в соответствии с п. 5.5.1 рекомендации.

- 4.1.4. Основную приведенную погрешность измеряемых величин для конфигураций ТМ с входными электрическими сигналами в виде напряжения постоянного тока определяют в точках, соответствующих 5, 25, 50, 75 и 95 % диапазона измерений, подключив к поверяемому ТМ источник калиброванных напряжений.
- 4.1.5. Основную приведенную погрешность измеряемых величин для конфигураций ТМ с входными электрическими сигналами в виде постоянного тока определяют в двух поверяемых точках, соответствующих 5 и 95 % диапазона измерений в соответствии с п. 5.5.5 рекомендации.
- 4.1.6. Для ТМ с входными электрическими сигналами в виде постоянного тока 0...5, 0...20 и 4...20 мА с корнеизвлекающей зависимостью измеряемой величины от входного сигнала основную приведенную погрешность определяют в точках

```
0,1; 1; 2; 3; 4; 5 мА - для диапазона 0...5 мА; 1; 5; 10; 15; 20 мА - для диапазона 0...20 мА; 4, 32; 8; 12; 16; 20 мА - для диапазона 4...20 мА.
```

Действительные значения измеряемой величины $A_{\mathcal{I}}$ для диапазонов входных сигналов 0...5, 0...20 и 4...20 мА рассчитывают по формулам (4.1), (4.2) и (4.3) соответственно:

$$A_{II} = \frac{A_{\text{MAKC.}}}{\sqrt{5}} \times \sqrt{I_{\text{ex.}i}}$$
 (4.1);

$$A_{\mathcal{I}} = \frac{A_{\text{\tiny MAKC.}}}{\sqrt{20}} \times \sqrt{I_{\text{\tiny ex.}i}}$$
 (4.2);

$$A_{II} = \frac{A_{MAKC.}}{\sqrt{16}} x \sqrt{I_{ex.i} - 4}$$
 (4.3)

- $A_{\it Д}$ действительное значение измеряемой величины в поверяемой точке:
- $A_{\mbox{\tiny MAKC}}$ верхний предел диапазона измеряемой величины (задается при конфигурации), нижний предел диапазона измеряемой величины равен 0;
- $I_{ex.i}$ значение тока на входе в проверяемой точке;
- 5 мА, 20мА, 16 мА диапазоны входных сигналов;
- 4 мА нижний предел диапазона входного сигнала для ТМ с входом 4...20 мА.
- 4.1.7. Основные приведенные погрешности измеряемых величин, определенные по формуле (5.1) рекомендации не должны превышать указанных в п. 2.2.1 настоящего руководства по эксплуатации.
- 4.1.8. Определение основной приведенной погрешности по компьютерному каналу совмещают с определением основной приведенной погрешности измеряемой величины.

Основная приведенная погрешность по компьютерному каналу не должна превышать основной приведенной погрешности измеряемой величины.

- 4.1.9. Определение основной погрешности срабатывания сигнализации
- 4.1.9.1. Производят конфигурацию ТМ для любого типа входного сигнала.
- 4.1.9.2. Задают любые значения двух уставок в пределах диапазона измерений.

- 4.1.9.3. Производят конфигурацию логики работы всех восьми реле по отношению к заданным уставкам с учетом возможности обрыва входной цепи.
 - 4.1.9.4. Задают гистерезис по обеим уставкам.
- 4.1.9.5. Подсоединяют к клеммам релейных каналов ТМ цепи индикации замкнутого/разомкнутого состояния каналов (например, цепи питания светодиодов).
- 4.1.9.6. Изменяя последовательно значения входного сигнала ТМ от одной уставки к другой, убедиться в срабатывании всех реле, как по индикации на лицевой панели ТМ, так и по индикаторам, подключенным к клеммам каналов.
- 4.1.9.7. Основная погрешность срабатывания сигнализации не должна превышать младшей единицы измеренного значения для следующих типов уставок:

```
уставка нижняя: U_{ycm} - сигнал уменьшается; U_{ycm} + U_{zucm} - \text{сигнал увеличивается;} уставка верхняя: U_{ycm} - сигнал увеличивается; U_{ycm} - U_{zucm} - \text{сигнал уменьшается;} где U_{ycm} - значение уставки; U_{zucm} - значение гистерезиса уставки.
```

4.1.9.8. Отсоедините источник входного сигнала от входных клемм ТМ и убедитесь в правильности срабатывания всех реле в случае обрыва входной цепи (кроме сигналов с токовым выходом).

5. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

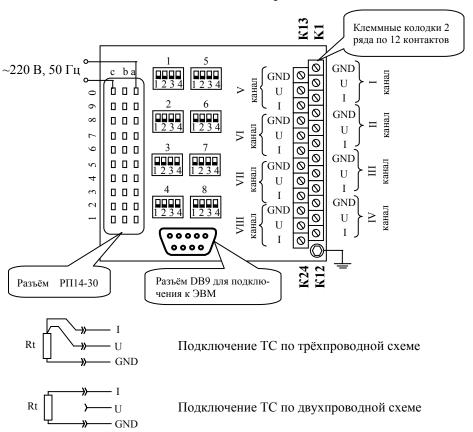
- 5.1. Техническое обслуживание ТМ сводится к соблюдению правил эксплуатации, хранения и транспортирования, изложенных в данном руководстве по эксплуатации, профилактическим осмотрам, периодической поверке и ремонтным работам.
- 5.2. Профилактические осмотры проводятся в порядке, установленном на объектах эксплуатации ТМ, но не реже двух раз в год и включают:
 - 1) внешний осмотр;
- 2) проверку прочности крепления линий связи ТМ с первичными преобразователями, отсутствия обрыва заземляющего провода, прочности крепления ТМ и заземляющего соединения;
 - 3) проверку работоспособности:
 - внутреннюю калибровку ТМ;
- проверку электрического сопротивления изоляции в соответствии с Рекомендацией «Методика поверки МИ 2342-95»;
- проверку электрической прочности изоляции в соответствии с Рекомендацией «Методика поверки МИ 2342-95»;
- проверку точности измерений ТМ в точках, соответствующих 5, 50, 95 % диапазона измеряемых величин в соответствии с разделом 4 настоящего руководства по эксплуатации.
- В условиях проведения проверки работоспособности, когда исключена возможность использования вспомогательных средств измерений, ТМ не подлежит проверке на точность измерений. В этом случае ТМ проверяется только на функционирование.

ТМ считается функционирующим, если его показания ориентировочно совпадают с измеряемой величиной.

- 5.3. Периодическую поверку ТМ производят не реже одного раза в два года в соответствии с указаниями, приведенными в разделе 4 настоящего руководства по эксплуатации.
- 5.4. ТМ с неисправностями, не подлежащими устранению при профилактическом осмотре, или не прошедший периодическую поверку, подлежит текущему ремонту.

6. ХРАНЕНИЕ

6.1. Условия хранения TM в транспортной таре на складе изгото- вителя и потребителя должны соответствовать условиям I ГОСТ 15150-69.


В воздухе не должны присутствовать агрессивные примеси.

- 6.2. Расположение ТМ в хранилищах должно обеспечивать свободный доступ к нему.
- 6.3. ТМ следует хранить на стеллажах.
- 6.4. Расстояние между стенами, полом хранилища и ТМ должно быть не менее 100 мм.

7. ТРАНСПОРТИРОВАНИЕ

- 7.1. ТМ транспортируется всеми видами транспорта в крытых транспортных средствах. Крепление тары в транспортных средствах должно производиться согласно правилам, действующим на соответствующих видах транспорта.
- 7.2. Условия транспортирования ТМ должны соответствовать условиям 5 по ГОСТ 15150-69 при температуре окружающего воздуха от минус10 до +50°C с соблюдением мер защиты от ударов и вибраций.
 - 7.3. Транспортировать ТМ следует упакованным в пакеты или поштучно. Транспортировать ТМ в коробках следует в соответствии с требованиями ГОСТ 21929-76.

Приложение А Схема электрическая соединений ТМ 5103

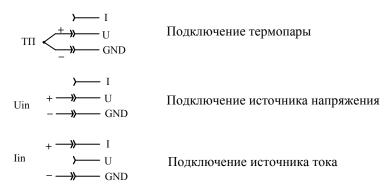
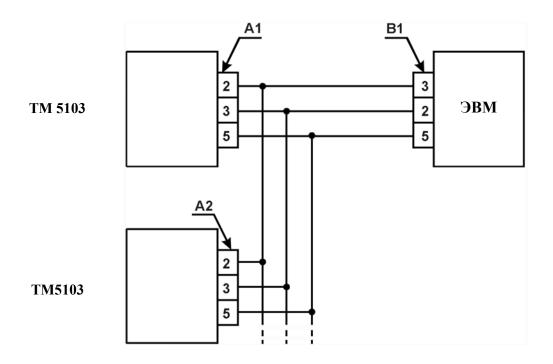


Рисунок А.1 Продолжение приложения А

Таблица А.1 - Назначение контактов клемм

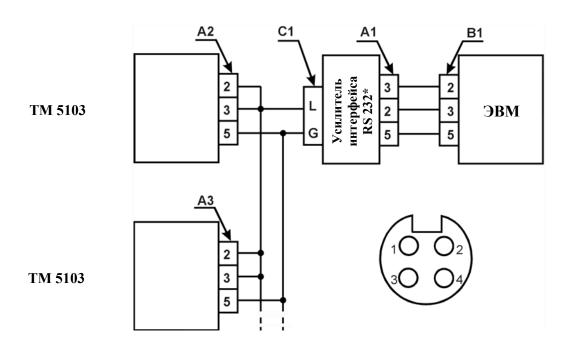

Номер контакта клеммы	Имя сигнала	Номер канала
1	GND	1
2	U	1
3	I	1
4	GND	2

5	U	2
6	I	2
7	GND	3
8	U	
9	I	3
10	GND	4
11	U	4
12	I	4
13	GND	5
14	U	
15	I	5
16	GND	6
17	U	6
18	I	6
19	GND	7
20	U	7
21	I	7
22	GND	8
23	U	8
24	I	8

Приложение Б

Схема подключения ТМ 5103 к ЭВМ

Трёхпроводная схема подключения ТМ 5103 к ЭВМ (до 10 ТМ 5103 с линией связи длиной до 15 м)



A1, A2, ... - разъём DB9; B1 – разъем DB9 интерфейса RS 232 ЭВМ.

Рисунок Б.1

Продолжение приложения Б

Двухпроводная схема подключения ТМ 5103 к ЭВМ (до 100 ТМ 5103 с линией связи длиной до 1000 м)

А1, А2, А3, ... - разъем DB9;

В1 – разъём DB9 интерфейса RS 232 ЭВМ;

С1 – разъём РС4.

Вид со стороны распайки ответной части разъёма

PC4

1, 2 - L

3, 4 - G

* В качестве усилителя интерфейса RS 232 можно использовать ПИ 232.

Рисунок Б.2

Продолжение приложения Б

Двухпроводная схема подключения ТМ 5103 к ЭВМ с использованием преобразователя интерфейса RS 485/RS 232*

В ТМ 5103 для интерфейса RS 485 устанавливается разъём DB9 (розетка) со следующим функциональным назначением контактов:

вывод 6 - R+; вывод 7 - А;

вывод 8 - В; вывод 9 - R-;

где: А и В - сигнальные выходы;

R+ -резистор 4,7 кОм, подключенный одним выводом к разъёму, а другим - к питанию +5B;

R- -резистор 4,7 кОм, подключенный одним выводом к разъёму, а другим к общему выводу (-) питания интерфейса.

Для улучшения помехозащищённости линии связи, рекомендуется соединить выводы R+c A, a R-c B на двух наиболее удалённых друг от друга TM 5103, объединённых в одну сеть, а на остальных TM 5103 контакты R+u R- никуда не подключать.

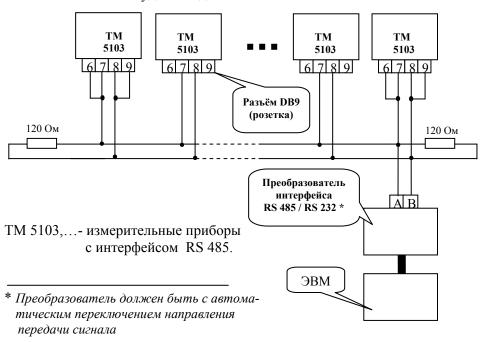


Рисунок Б.3