

прибор аналоговый **А100-Н**

Руководство по эксплуатации 2.600.019 РЭ

ПЕРЕЧЕНЬ ВЛОЖЕННЫХ СХЕМ

Рис.1. Схема электрическая принципиальная канала изме	рения
---	-------

- Рис.1а. Расположение элементов на плате канала измерения
- Рис. 3. Схема электрическая принципиальная прибора
- Рис.4. Схема электрическая соединений прибора

В связи с непрерывным совершенствованием приборов возможны конструктивные и схемные изменения, не ухудшающие работу прибора

Настоящее руководство по эксплуатации предназначено для изучения приборов показывающих и регистрирующих одноканальных и двухканальных А100-Н и содержит необходимый объем сведений и иллюстраций, достаточный для их правильной эксплуатации (использования, транспортирования, хранения, технического обслуживания).

Первое включение приборов должно производиться только после ознакомления со всеми разделами руководство по эксплуатации.

1 НАЗНАЧЕНИЕ

- 1.1 Приборы аналоговые показывающие и регистрирующие одноканальные и двухканальные А100-Н (в дальнейшем приборы) предназначены независимо по каждому каналу для:
- измерения сигналов термопар, термопреобразователей сопротивления, постоянного тока и напряжения;
 - индикации измеренных значений указателем на вертикальной шкале;
- регистрации измеренных значений фломастером на диаграммной бумаге:
- сигнализации выхода измеренных значений за допустимые пределы «Мало» и «Много»;
 - преобразования измеренных значений в сигнал постоянного тока.
- 1.2 Приборы имеют щитовое исполнение и предназначены для работы при температуре окружающего воздуха от 5 до 50 °C и верхнем значении относительной влажности 80% при температуре 35°C и более низких температурах без конденсации влаги (климатическое исполнение УХЛ 4.2);
- 1.3 По метрологическим свойствам приборы являются средствами измерения.
- 1.4 При работе с термопреобразователем сопротивления не требуется подгонки линии связи, так как подключение термопреобразователей к прибору производится по четырехпроводной схеме.

Сопротивление каждого провода линии связи термопреобразователей сопротивления с приборами не должно превышать 5 Ω .

1.5 Для работы с термопарами приборы имеют внутреннюю компенсацию температуры холодных спаев.

Суммарное сопротивление линии связи и внутреннего сопротивления термопар не должно превышать 200 Ω .

- 1.6 Приборы являются восстанавливаемыми изделиями и не создают индустриальных радиопомех.
- 1.7 При заказе прибора следует указывать его название; модификацию (см. приложение 1); климатическое исполнение; по каждому каналу: НСХ или входной сигнал; диапазон измерения (см. приложение 2); выходной сигнал; количество заказываемых приборов.

Например:

«Прибор аналоговый A100-H-2001; УХЛ 4.2; 5 штук; первый канал: 100П, от минус 25 до плюс 25 °C, выходной сигнал 4-20 mA».

2 ХАРАКТЕРИСТИКИ ПРИБОРА

2.1 Исполнения приборов приведены в приложении 1, диапазоны измерений - в приложении 2.

Шкалы приборов, работающих с сигналами от термопар и термопреобразователей сопротивления, — неравномерные и имеют обозначение номинальной статической характеристики преобразования (HCX).

Шкалы приборов, работающих с сигналами постоянного тока и напряжения, могут быть равномерными и неравномерными с обозначениями НСХ.

- 2.2 Рабочее положение приборов вертикальное.
- 2.3 Длина шкалы (100±0,1) mm. Указатели выполнены для первого канала красного цвета, для второго синего.
- 2.4 Ширина диаграммной ленты (100±0,1) mm, длина 15 m. Регистрация первого канала осуществляется красным цветом, второго синим.
 - 2.5 Приборы имеют индикацию «Прибор включен».
- 2.6 Напряжение питания приборов должно быть (220^{+22}_{-33}) V частотой (50 ± 1) Hz.

Потребляемая мощность при номинальном напряжении питания не превышает: для одноканального-15 VA; и для двухканального-20 VA.

- 2.7 Габаритные и установочные размеры прибора даны в приложении 3.
- 2.8 Устройства преобразования приборов имеют выходной сигнал от 0 до 5 или от 4 до 20 mA при сопротивлении нагрузки соответственно не более 2000 и 500 Ω .

Номинальная статическая характеристика преобразования приборов соответствует формуле:

$$I = (I_{\scriptscriptstyle g} - I_{\scriptscriptstyle H}) \times \frac{X - X_{\scriptscriptstyle H}}{X_{\scriptscriptstyle g} - X_{\scriptscriptstyle H}} + I_{\scriptscriptstyle H}, \tag{1}$$

где I — значение информативного параметра выходного сигнала, mA;

- I_e , I_H соответственно верхнее и нижнее предельные значения выходного сигнала, mA;
- X значение информативного параметра входного сигнала, mV, Ω , mA, V (под информативным параметром понимают среднее значение сигнала за время не менее 20 ms);
- X_e , X_H соответственно верхнее и нижнее предельные значения входного сигнала, mV, Ω , mA, V.
- 2.9 Сигнальные устройства приборов имеют на выходе контактные группы на переключение, рассчитанные на подключение активной нагрузки с характеристиками: напряжение постоянного или переменного тока до 220 V при силе тока до 1.0 A.
- 2.10 Основная погрешность приборов, выраженная в процентах от нормирующего значения, не выходит за пределы допускаемых значений, равных:
 - $\pm 0,5$ по показаниям и преобразованию;
 - $\pm 1,0$ по регистрации и сигнализации.

Исключение составляют приборы с относительным изменением измеряемого активного сопротивления менее 25 % от его начального значения и с диапазоном изменения входного сигнала менее 20 mV, для которых пределы допускаемых значений основной погрешности равны:

- $\pm 1,0$ по показаниям и преобразованию;
- ±1,5 по регистрации и сигнализации

За нормирующее значение принимается разность верхнего и нижнего предельных значений входного сигнала, если нулевое значение находится на краю диапазона измерений или вне его; сумму абсолютных предельных значений входного сигнала, если нулевое значение находится внутри диапазона измерений.

2.11 Вариация приборов по показаниям и регистрации не превышает предела основной погрешности показаний и регистрации соответственно.

Зона возврата устройств сигнализации не превышает основной погрешности по сигнализации.

- 2.12 Заходы указателей приборов за крайние отметки шкалы составляют не менее 1 mm. Время прохождения указателем всей шкалы (быстродействие) не превышает 1,0 s.
- 2.13 Время, в течение которого выходной сигнал входит в зону предела допускаемой основной погрешности по преобразованию (быстродействие по преобразованию) не превышает 1,0 s.
- 2.14 Количество полуколебаний указателя прибора возле положения равновесия не превышает трех.

2.15 Запись на диаграммной ленте производится непрерывной линией. Для приборов при скачкообразном изменении входного сигнала от нижнего до верхнего предельного значения допускаются разрывы линии регистрации, не приводящие к потере информации.

Выброс пишущего устройства не превышает 2,5 mm.

Смещение пишущих устройств относительно друг друга по координате времени в двухканальных приборах не превышает 4 mm.

- 2.16 Номинальная средняя скорость перемещения диаграммной ленты соответствует одному из значений ряда: 20; 40; 80; 160; 320; 640; 1280; 2560 mm/h. У приборов, предназначенных для работы в системе измерения расхода, скорость перемещения диаграммной ленты должна быть не менее 80 mm/h. Отклонение средней скорости перемещения диаграммной ленты не превышает $\pm 1,0~\%$ от ее номинального значения.
- В условиях поставки приборы имеют скорость перемещения диаграммной ленты 80 m /h. В процессе эксплуатации при необходимости установки любой другой скорости из приведенного выше ряда, редуктор лентопротяжного механизма легко перенастраивается согласно рисунка 11.
- 2.17 Входное сопротивление приборов при следующих входных сигналах должно быть:
 - 0-20, 0-50 и 0-100 mV не менее 100 kΩ; – по ГОСТ Р 8.·585-2001 не менее 200 kΩ; – 0-5; 4-20 mA не более 15 Ω.
- 2.18 Измерительный ток, протекающий по чувствительному элементу термопреобразователей сопротивления, не превышает 2 mA.
- 2.19 Пульсация выходного сигнала (отклонения мгновенного значения от среднего) не превышает 25 mV.
- 2.20 Электрическая изоляция цепей приборов относительно корпуса и цепей между собой выдерживает в течение 1 min испытательное напряжение переменного тока практически синусоидальной формы частотой 50 Hz согласно таблице 1:

Таблица 1

Проверяемые цепи	Испытательное напряжение, V, при нормальных условиях
Силовая цепь - измерительные цепи; корпус; цепи устройств сигнализации	1500
Цепи устройств сигнализации каждого канала - между собой, измерительные цепи, корпус, цепи устройств сигнализации остальных каналов	850
Измерительная цепь каждого канала – корпус, измерительные цепи остальных каналов	250

2.21 Электрическое сопротивление изоляции цепей приборов относительно корпуса и цепей между собой должно быть не менее следующих значений:

Таблица 2

	Сопротивление изоляции, MW			
	при температу-	при температу-		
Проверяемые цепи	ре окружающего	ре окружающего		
	воздуха (20±5)°С	воздуха 50 °C и		
	и относитель-	относительной		
	ной влажности	влажности 65 %		
	до 80 %			
Силовая цепь - корпус, цепи устройств	40	10		
сигнализации канала	40			
Цепи устройств сигнализации между	40	10		
собой и корпусом	40	10		
Измерительная цепь каждого из каналов				
- измерительные цепи остальных кана-	100	20		
лов, корпус, цепи устройств сигнализа-	100	20		
ции, силовая цепь				

2.22 Изменение погрешности приборов по показаниям, преобразованию и сигнализации, γ_t , в процентах, вызванное изменением температуры окружающего воздуха от (20 \pm 2) °C до верхнего (нижнего) рабочего значения, не превышает значений, определяемых следующей формулой:

$$\gamma_{\mathsf{t}} = K(t_{\scriptscriptstyle \theta(H)} - t_{\scriptscriptstyle n}) \tag{2}$$

где K - коэффициент пропорциональности, %/°C, равный:

0,015; 0,003 и 0,040 — для приборов с диапазоном изменения входного сигнала 20 mV и более, не имеющих компенсацию термо-э.д.с. свободных концов термопары, и приборов с относительным изменением измеряемого активного сопротивления более 25 % от его начального значения, соответственно по показаниям, по преобразованию и по сигнализации;

0,025; 0,040 и 0,050 — для приборов с диапазоном изменения входного сигнала 20 mV и более, имеющих компенсацию термо-э.д.с. свободных концов термопары, соответственно по показаниям, по преобразованию и по сигнализации;

0,035; 0,050 и 0,060 — для приборов с диапазоном изменения входного сигнала менее 20 mV, не имеющих компенсацию термо-э.д.с. свободных концов термопары, и приборов с относительным изменением измеряемого активного сопротивления менее 25 % от его начального значения, соответственно по показаниям, по преобразованию и по сигнализации;

- 0,040; 0,055 и 0,065 для приборов с диапазоном изменения входного сигнала менее 20 mV, имеющих компенсацию термо-э.д.с. свободных концов термопары, соответственно по показаниям, по преобразованию и по сигнализации;
- te(H) верхнее(нижнее) значение температуры окружающего воздуха, равное 50 (5) °C ;
 - tn значение температуры для нормальных условий, °C.
- 2.23 Изменение погрешности приборов по показаниям, по преобразованию и по сигнализации, вызванное изменением напряжения питания на плюс 10 и минус 15% от номинального значения, в процентах от нормирующего значения, не превышает половины предела допускаемой основной погрешности.
- 2.24 Изменение погрешности приборов, вызванное влиянием внешнего магнитного поля напряженностью 400 A/m, образованного переменным током частотой 50 Hz, при самых неблагоприятных фазе и направлении поля не превышает предела основной погрешности.
- 2.25 Изменение погрешности приборов по показаниям, преобразованию, сигнализации, вызванное влиянием напряжения помехи нормального вида не более 20 % от нормирующего значения и имеющего любой фазовый угол, не превышает предела основной погрешности.

Примечание. Данное требование не распространяется на приборы с входным сигналом в виде активного сопротивления.

- 2.26 Изменение погрешности приборов по показаниям, преобразованию, сигнализации, вызванное влиянием напряжения помехи общего вида, не превышает половины предела допускаемой основной погрешности. Напряжение помехи общего вида равно:
- нормирующему значению (для приборов с входными сигналами напряжения постоянного тока и э.д.с);
- произведению нормирующего значения на максимальное значение входного сопротивления или измерительного тока, протекающего через чувствительный элемент (для приборов с входными сигналами в виде силы тока или активного сопротивления).
- 2.27 Изменение погрешности приборов по преобразованию, вызванное отклонением сопротивления нагрузки от верхнего предельного значения, установленного ГОСТ 26.011-80, на минус 50 % не превышает половины предела основной погрешности.
- 2.28 Приборы с входными сигналами от термопар выдерживают перегрузку, вызванную увеличением (уменьшением) входного сигнала, соответствующего верхнему (нижнему) пределу измерения, на 25 % от нормирующего значения.

- 2.29 Приборы с входными сигналами в виде активного сопротивления выдерживают перегрузку, вызванную коротким замыканием или обрывом любого провода линии связи с термопреобразователем сопротивления.
 - 2.30 Средний срок службы приборов не менее 10 лет.
- 2.31 Средняя наработка на отказ каждого прибора при температуре окружающего воздуха (20 ± 5) °C и относительной влажности до 80~% не менее 25000~h.

3 СОСТАВ ИЗДЕЛИЯ

В состав изделия входят: прибор, комплект запасных частей, комплект инструмента и принадлежностей.

Прибор состоит из следующих основных узлов: корпуса с крышкой, выдвижного шасси с платами печатного монтажа, балансирующего двигателя, лентопротяжного механизма и узла записи.

4 УСТРОЙСТВО И РАБОТА ПРИБОРА

4.1 Принцип работы прибора

В основу работы прибора положен принцип электромеханического следящего уравновешивания. Входной сигнал от датчика предварительно нормализуется в пределах от 0 до 8 V.

Далее по тексту приведено описание двухканального прибора.

Одноканальный прибор отличается отсутствием второго канала (шкалы, устройства регистрации, двигателя M2, реохорда R2, а также платы A2, разъемов X7, X9 и связанных с ними электрических цепей).

Принципиальные электрические схемы прибора и плат приведены на рисунках 1-4. Перечень элементов к схемам электрическим прибора указан в приложении 5.

Электрическая принципиальная схема прибора состоит из:

- усилителя входного сигнала (УВС) D5;
- преобразователя напряжения в ток (ПНТ) D8;
- вторичного усилителя (ВУ) D7;
- ограничителя верхнего уровней сигнала (ОВУ) D12;
- ограничителя нижнего (ОНУ) D11;
- повторителя сигнала (ПС) D9;
- повторителя сигнала с реохорда (ПСР) D10;
- усилителя разбаланса (УР) D15;
- компаратора нижнего уровня сигнала (КНУ) D16;
- компаратора верхнего уровня сигнала (КВУ) D17;
- источника питания положительной полярности (ИПП) D3;
- источника питания отрицательной полярности (ИПО) D4;
- источника опорного напряжения отрицательной полярности (ИОНО) V7;

- источника опорного напряжения положительной полярности (ИОНП) D13;
 - источника тока (ИТ) D2.

Сигнал с датчика через фильтр R11, C3, R16, C6 поступает на УВС, который усиливает его до уровня 4 V.

Необходимое смещение входного сигнала устанавливают резистором R6 и перемычкой X11, коэффициент усиления - резистором R24 и перемычкой X12. Усиленный сигнал поступает на ПНТ и ВУ.

ПНТ преобразует входной сигнал напряжения в ток 0-5 mA или 4-20 mA в зависимости от положения перемычек X13...X16.

ВУ усиливает сигнал и приводит его к диапазону 0,5 – 8,5 V.

После ВУ сигнал поступает на КНУ и КВУ, где он сравнивается с сигналами уставок, снимаемых с резисторов R52 и R53. Если сигнал выше или ниже заданного уровня, срабатывающие КНУ и КВУ изменяют состояние реле сигнализации, которые расположены на отдельной плате A3 (рис. 2).

Для установки задания сигнальных устройств необходимо нажать одну из кнопок S6 или S7 и, вращая ось резистора R52 или R53, установить указатель прибора на желаемую отметку. Кнопку отпустить. Прибор готов к работе.

ПС и ПСР служат для исключения влияния выходного сопротивления резисторов уставок и реохорда на точность задания уставок и на точность показаний прибора. После повторителей усиленный входной сигнал и сигнал с реохорда вычитаются на резисторах R86 и R87, а их разность усиливается УР и усилителем мощности на транзисторах V17-V20; V23, V24. Сигнал с усилителя мощности приводит во вращение двигатель следящей системы прибора. Резистором R56 подбирается необходимая чувствительность прибора, а резистором R79 — обратная связь по скорости двигателя, стабилизирующая динамику следящей системы прибора.

ОВУ и ОНУ настроены таким образом, чтобы исключить работу двигателя следящей системы при входных сигналах, выходящих за пределы диапазона измерения.

Питание схем обоих каналов прибора и привода диаграммы осуществляется от общего трансформатора Т1.

4.2 Устройство прибора

Крепление приборов (см. рисунок 5) осуществляется обоймами *1*, укрепленными на корпусе *2*.

Выдвижное шасси 1 прибора (см. рисунок 6) фиксируется в корпусе защелкой.

Чтобы выдвинуть шасси, необходимо потянуть ручку 5 на себя, после чего за эту же ручку шасси выдвигается из корпуса на расстояние, необходимое для обслуживания прибора.

В передней части шасси расположены шкалы *3*, фломастерные пишущие узлы и указатели *2*, индикатор *4*, ручка *5*.

Слева на шасси расположены лентопротяжный механизм 6, исполнительные двигатели 7.

Справа на шасси расположены: выключатель исполнительного двигателя 3 (см. рисунок 7), каретки с указателями и устройствами записи 4. Для записи применяется фломастер.

Платы печатного монтажа 1 (по числу каналов прибора) установлены в штепсельные разъемы 2. На каждой плате размещены элементы измерительной схемы, усилителя, стабилизатора напряжения сигнального устройства.

Сверху платы закрываются кожухом с отверстиями для доступа к резисторам усилителя: регулировки коэффициента передачи ЧУВСТВ., величины обратной связи ОБР.СВЯЗЬ.

Лентопротяжный механизм (см. рисунок 8) состоит из кронштейна 3, на котором размещены синхронный электродвигатель 1, редуктор 4, ведущий барабан 7, подающая гильза 6.

Штепсельный разъем на задней стенке шасси посредством гибкого жгута соединяется с разъемами внешних соединений 2-5 (см. рисунок 9), трансформатором и платой сигнального устройства, расположенных на задней стенке корпуса.

Обмоточные данные трансформатора приведены в приложении 4.

5 МАРКИРОВКА

- 5.1 На табличке, укрепленной на верхней стенке шасси прибора нанесено:
 - товарный знак предприятия-изготовителя;
 - условное обозначение прибора;
- пределы изменения входных сигналов (только для приборов с входным сигналом по ГОСТ 26.011-80);
 - напряжение и частота тока питания;
 - надпись «Сделано в России»:
 - обозначение стандарта ГОСТ 7164-78;
 - обозначение знака Государственного реестра;
 - номер прибора по системе нумерации предприятия-изготовителя;
 - год выпуска.

На задней панели нанесены обозначения колодок и разъемов внешних подключений.

- 5.3 На шкале прибора нанесено:
- обозначение единиц измерения измеряемой величины;
- условное обозначение номинальной статической характеристики преобразования датчика;
 - множитель (при необходимости).

6 УПАКОВКА

Упаковка приборов состоит из потребительской и транспортной тары, изготавливаемой по чертежам предприятия-изготовителя

Каждый прибор упаковывается в картонную коробку.

Принадлежности и запасные части находятся в той же коробке, что и прибор, сюда же вложены паспорт, руководство по эксплуатации, товаросопроводительная документация.

7 УКАЗАНИЕ МЕР БЕЗОПАСНОСТИ

При эксплуатации и испытаниях приборов необходимо соблюдать общие правила и требования безопасности, рекомендуемые для эксплуатации электроустановок.

Приборы должны обслуживаться персоналом, имеющим квалификационную группу по технике безопасности при эксплуатации электроустановок не ниже II.

Запрещается эксплуатировать приборы со снятыми защитными щитками, крышками, закрывающими токоведущие части, находящиеся под напряжением. При работе приборы должны быть заземлены.

Ремонтные работы, подключение разъемов и замену элементов приборов необходимо проводить при отключенном источнике питания. При включенных приборах разрешается производить только установку задания сигнального устройства, регулировку характера успокоения.

По способу защиты человека от поражения электрическим током приборы соответствуют классу I ГОСТ 12.2.007.0-75.

Требования безопасности при испытании изоляции и измерения ее сопротивления по ГОСТ 21657-83.

8 ПОРЯДОК УСТАНОВКИ

8.1 Распаковка

Картонные коробки с приборами вскрыть, проверить комплектность. Открыть крышку прибора, вынуть картонные уплотнительные прокладки, снять транспортный зажим, фиксирующий шасси в корпусе, выдвинуть шасси из корпуса, снять зажимы, фиксирующие каретки с указателями.

Выдержать приборы в таком положении не менее 48 h при температуре (20 ± 10) °C и относительной влажности воздуха (60 ± 20) %. При распаковке удары не допускаются.

8.2 Монтаж прибора

Прибор должен быть установлен в хорошо освещенном помещении с чистым сухим воздухом и незначительно меняющейся температурой.

Для монтажа приборов на щитах необходимо снять обойму 1 (рисунок 9), вставить прибор в вырез щита до упора, надеть обойму на корпус и затянуть крепежные винты 8.

Заземление приборов осуществляется присоединением к зажиму «Земля» (рисунок 9) медного провода сечением не менее $2.5~\rm mm^2$. Остальные внешние подключения приборов осуществляется проводом сечением $0.35-0.5~\rm mm^2$.

Подключение термопар осуществлять термокомпенсационными проводами, соответствующими характеристике термопары. Термопары с НСХ типа В подключать медными проводами.

Схема подключения приведена в приложении 6.

Подключение проводов к входной четырехклеммной колодке прибора необходимо производить следующим образом: зачистить провод от изоляции на длину примерно 15 мм, сложить зачищенную часть вдвое, ослабить гайку и вставить конец провода в отверстие контакта, затянуть гайку. После подключения провода колодку закрыть крышкой.

При сильных помехах питание прибора необходимо подавать через разделительный трансформатор мощностью не менее 100 VA.

8.3 Включение сигнального устройства

Выходные контакты реле сигнального устройства выведены на разъемы внешних подключений прибора.

9 ПОДГОТОВКА R РАБОТЕ

- 9.1 Для приведения прибора в действие необходимо провести следующую подготовку:
 - установить диаграммную ленту (п.9.2);
 - установить фломастер (п.9.3);
- установить переключатель на боковой панели шасси в положение «Включено»;
- подать на прибор напряжение питания, при этом должен включиться светодиод;
 - установить необходимое задание сигнального устройства;
- прогреть прибор в течение не менее 30 min, приборы, работающие с термопарами не менее 120 min.
 - Прибор готов к работе.
 - 9.2 Для установки диаграммной ленты проделать следующее:
 - открыть крышку прибора;
 - выдвинуть шасси из корпуса;

- выключить переключатель на боковой панели;
- нажав на клавишу защелки 8 (рисунок 6), повернуть лентопротяжный механизм;
 - вынуть вилку 8 (рисунок 8) синхронного двигателя из гнезда;
- нажав на защелку, расположенную на нижней плате шасси, снять лентопротяжный механизм.

Установить диаграммную ленту по схеме рисунка *10* следующим образом:

- снять подающую гильзу 6 (рисунок 8), для чего, утопив нижнюю ось гильзы, вывести ее из зацепления с кронштейном 3;
 - надеть на гильзу рулон бумаги до упора;
- установить подающую гильзу с рулоном на место, выполнив операции по ее извлечению в обратном порядке;
- перекинуть диаграммную ленту через ведущий барабан 7, надев перфорацию на выступы барабана;
- для съема приемной гильзы необходимо осадить ее вниз до упора и: вывести из зацепления с кронштейном 3;
- завести пружины приемной гильзы 2, для чего гильзу вращать до отказа в направлении, противоположном направлению намотки диаграммной ленты;
 - закрепить ленту на приемной гильзе, намотав два-три слоя бумаги;
- отпустить гильзу; пружина, раскручиваясь, выберет оставшуюся свободной диаграммную ленту и обеспечит ее натяг;
- проверить правильность установки диаграммной ленты, для чего, вращая ведущий барабан на зубчатое колесо, намотать на приемную гильзу три-четыре слоя бумаги; при этом ведущие выступы барабана должны точно попадать в перфорационные отверстия ленты;
- после заправки диаграммной ленты установить лентопротяжный механизм на шасси прибора. Вставить вилку 8 синхронного двигателя. При установке лентопротяжного механизма на шасси прибора следует обращать внимание на укладку жгута, это поможет предотвратить повреждение провода питания двигателя лентопротяжного механизма.
- **Примечание.** Прибор рассчитан на установку рулона диаграммной ленты с наружным диаметром 35 mm. Если диаметр превышаем указанное значение, то следует смотать с рулона необходимое количество ленты.
- **9.3** Перед началом работы необходимо открыть лентопротяжный механизм, установить узлы пишущие специальные (фломастеры) и осторожно снять защитные колпачки с фломастеров. Регулировку устройства записи по погрешности проводить, при необходимости, согласно п.12.7. Давление фломастера на диаграммную бумагу не более 6 g. во избежание преждевременного износа. Длина линии записи примерно 1300 m.

Цвет чернил должен соответствовать цвету указателя канала (первый канал - красный, второй канал - синий).

10 МЕТОДЫ И СРЕДСТВА ПОВЕРКИ

Настоящий раздел устанавливает методы и средства первичной (после ремонта) и периодических поверок приборов.

Организация, порядок проведения и формы представления результатов поверок по ПР 50.2.006-94.

При поверке должны применяться методы и средства, указанные в настоящем разделе, а также в ГОСТ 8.280-78. Поверку приборов следует проводить по каждому каналу не реже одного раза в год.

10.1 Операции и средства поверки

При поверке приборов должны выполняться операции и применяться средства поверки, указанные в таблице 3.

Таблица 3

Наименование операции	№ п.п.	Средства поверки и их харак- теристики
1 Внешний осмотр	10.3.1	Визуально
2 Измерение электрического со- противления изоляции	10.3.2	Мегомметр, номинальное рабочее напряжение 500 и 100 V; основная погрешность $\pm 2,5$ %; пределы измерений 0-100 $\mathrm{M}\Omega$
3 Проверка индикации «Прибор включен»	10.3.3	Визуально
4 Проверка захода указателя	10.3.4	Лупа измерительная ЛИЗ- 10 ^х с ценой деления 0,1 mm.
5 Проверка быстродействия	10.3.5	См. приложение 8
6 Проверка характера успокоения	10.3.6	Визуально
7 Определение основной погрешности: по показаниям по записи по преобразованию по сигнализации 8 Определение вариации показа-	10.3.7 10.3.8 10.3.9 10.3.10 10.3.11	См. приложение 7
ний и регистрации		
9 Проверка качества записи	10.3.13	Лупа измерительная ЛИЗ-10 ^х с ценой деления 0,1mm

продолжение таблицы 3

Наименование операции	№ п.п.	Средства поверки и их харак- теристики
10 Проверка выброса пишущего устройства	10.3.14	То же
11 Проверка отклонения скорости перемещения диаграммной ленты от номинального значения	10.3.15	Электрические часы синхронные (максимальная погрешность ±2 min за сутки)
12 Определение зоны возврата	10.3.16	
13 Проверка выходных сигналов и НСХ преобразования	10.3.17	

10.2 Условия поверки и подготовка к ней

При проведении поверки должны соблюдаться следующие условия:

- температура окружающего воздуха (20±2) °C;
- относительная влажность воздуха от 30 до 80 %;
- атмосферное давление от 86 до 106 кРа;
- напряжение питания (220±4,4) V;
- частота тока питания (50±1) Hz;
- коэффициент высших гармоник питающей сети не более 5 %;
- отсутствие вибрации, тряски и ударов, влияющих на работу прибора;
- отсутствие внешних электрических и магнитных полей (кроме земного магнитного поля), влияющих на работу прибора.

Перед проведением поверки должны быть выполнены следующие подготовительные работы:

- установить поверяемый прибор и подготовить средства поверки;
- после проверки по п.п. 10.3.1, 10.3.2 прибор подключить по схеме приложения 7;
- прибор прогреть в течение не менее 30 min (для приборов, работающих с термопарами не менее 120 min).

10.3 Проведение поверки

10.3.1 Внешний осмотр

При проведении внешнего осмотра должно быть установлено соответствие прибора комплектности, маркировке, обозначениям на шкалах единиц измеряемых величин.

Следует убедиться в отсутствии дефектов отдельных элементов прибора, при наличии которых не может быть допущено их применение в приборе.

10.3.2 Измерение электрического сопротивления изоляции цепей

Измерение проводить мегомметром с номинальным напряжением 500 V (для цепей с испытательным напряжением 500 и 1500 V) и мегомметром с номинальным напряжением 100 V (для остальных цепей). Перед проверкой соединить накоротко контакты согласно таблице 4.

Отсчет показаний мегомметра проводить по истечении времени, за которое его показания установятся.

• Приборы считаются выдержавшими испытание, если электрическое сопротивление изоляции цепей прибора не менее значений, приведенных в таблице 2.

10.3.3 Проверка индикации "Прибор включен"

При подаче напряжения питания на прибор должен засветиться светодиод (индикатор 4 на рисунке 6).

10.3.4 Проверка заходов указателя

Для проверки заходов указателя необходимо, изменяя входной сигнал, довести указатель прибора поочередно до упоров.

В каждом предельном положении указателя контролировать расстояние от средней линии крайней отметки шкалы до конца указателя штангенциркулем, установив на нем размер 1,05 mm.

• Приборы считаются выдержавшими испытание, если заходы указателя больше раствора штангенциркуля.

Таблица 4

	Соединительные контакты			
Цепь	Одноканальный	Двухканальный		
40.12	прибор	прибор		
Силовая цепь	5a, 5b X6	5a, 5b X6		
Измерительная цепь:				
канал 1	1, 2, 3,4 X8	1, 2, 3, 4 X8		
	1a, 1b X6	1a, 1b X6		
канал 2	_	1, 2, 3, 4 X9		
	_	1а, 1в Х7		
Сигнальные устройства МАЛО:				
канал 1	2b, 3b, 4b X6	2b, 3d, 4b X6		
канал 2	_	2a, 3a, 4a X7		
Сигнальные устройства МНОГО:				
канал 1	2a, 3a, 4a X6	2a, 3a, 4a X6		
канал 2		2b, 3b, 4b X7		

10.3.5 Проверка быстродействия

Проводить проверку следующим образом:

- подключить приборы по схеме приложения 8;
- установить переключатель S2 в положение 2;
- при помощи источника регулируемого сигнала ИРС1 указатель совместить с начальной отметкой шкалы;
- установить переключатель S2 в положение 1. При помощи источника регулируемого сигнала ИРС2 указатель прибора совместить с конечной отметкой шкалы;
- на генераторе прямоугольных импульсов ГПИ установить длительность импульсов и пауз между импульсами, равную предельному быстродействию. Замкнуть переключатель S1 и наблюдать за перемещением указателя прибора. Указатель должен перемещаться на всю длину шкалы от начальной до конечной отметки и обратно.
- Приборы считаются выдержавшими испытание, если указатель проходит от начальной до конечной отметки

10.3.6 Проверка характера успокоения

Проверка проводится на трех числовых отметках шкалы (примерно, 10, 50 и 90 %) при скачкообразном изменении входного сигнала со стороны возрастающих и убывающих значений.

Значение изменения входного сигнала должно быть не менее 40 % от диапазона измерения.

• Прибор считают выдержавшим испытание, если указатель устанавливается не более чем после трех полуколебаний.

10.3.7 Подготовка к определению основной погрешности

Перед испытаниями приборы должны быть подключены по схеме приложения 7 и установлены на предварительный прогрев на время не менее 2 h (для приборов, имеющих компенсацию термо-э.д.с. свободных концов термопары) или 0,5 h (для остальных приборов).

Если проверка приборов проводится по рисунку 7.2 (см. приложение 7) необходимо подключить ко входу термоэлектродные провода ТП, соответствующие его градуировочной характеристике. Концы проводов соединить с медными проводами и спаи их поместить в термостат Т со стабильной температурой, измеряемой термометром для введения поправки на температуру термостата. Спаи медных и термоэлектродных проводов должны быть помещены в термостат не менее чем за 2 h до начала поверки.

Термоэлектродные провода должны быть аттестованы органами метрологической службы.

Допускается каждый термоэлектродный провод составлять из двух частей ТП1' и ТП1", ТП2' и ТП2". При этом части термоэлектродных проводов ТП1' и ТП2' должны быть установлены в термостате, а части термоэлектродных проводов ТП1" и ТП2" должны быть подключены к прибору не менее чем за 2 h до поверки. В этом случае части ТП1' с ТП1" и ТП2' с ТП2" допускается соединять непосредственно перед поверкой

10.3.8 Определение основной погрешности по показаниям

Основная погрешность прибора по показаниям определяется на всех числовых отметках шкалы следующим образом.

Указатель прибора с помощью меры входного сигнала установить, не доходя до проверяемой отметки шкалы, со стороны меньших значений. Медленно увеличивая входной сигнал, довести указатель до совмещения с этой отметкой и определить значение входного сигнала $X=X_1$.

Затем указатель установить, не доходя до проверяемой отметки, со стороны больших значений. Медленно уменьшая входной сигнал, довести указатель до совмещения с этой отметкой и определить значения входного сигнала $X=X_2$.

Определить наибольшее из двух значений $\,\Delta_1\,$ и $\,\Delta_2\,$, рассчитанных по формулам:

$$\Delta_1 = X_{HOM} - X_1 - \Delta_e - X_m, \tag{3}$$

$$\Delta_2 = X_{HOM} - X_2 - \Delta_e - X_m, \tag{4}$$

где $X_{\text{ном}}$ – номинальное значение входного сигнала, соответствующее проверяемой отметке, mV, Ω , V, mA;

 X_1 , X_2 — значения входного сигнала на проверяемой отметке шкалы при подходе указателя к этой отметке со стороны соответственно возрастающих и убывающих значений, mV, Ω , mA, V;

 X_m — значение термо-э.д.с. по ГОСТ Р 8.585-2001, mV, соответствующее принятому значению температуры термостата при проверке приборов по рисунку 7.2, в остальных случаях X_{τ} =0;

 Δ_{ϵ} — поправка на исключаемую систематическую составляющую погрешности поверки, mV, определяемую как разность между термо-э.д.с. компенсационных проводов соответствующей характеристики по ГОСТ Р 8.585-2001 и термо-э.д.с. применяемых аттестованных компенсационных проводов при поверке по рисунку 7.2, в остальных случаях Δ_{ϵ} =0.

Значения X_{ном} для прибора с входным сигналом от термопар и термопреобразователей сопротивления берутся соответственно по ГОСТ Р 8.585-2001 и ГОСТ 6651-94.

Значение $X_{\text{ном}}$ для приборов с входным сигналом по ГОСТ 26.011-80 рассчитать по формуле:

$$X_{HOM} = \frac{\mathcal{I}}{N_{B} - N_{H}} \times (N - N_{H}) + X_{O}, \tag{5}$$

где Д – нормирующее значение, mV;

N – числовое значение проверяемой отметки шкалы;

 $N_{\scriptscriptstyle B},\ N_{\scriptscriptstyle H}$ — числовое значение соответственно верхней и нижней отметок шкалы;

 X_o – нижнее предельное значение входного сигнала, mV.

Основную приведенную погрешность приборов по показаниям, в процентах от нормирующего значения, рассчитать по формуле:

$$g_n = \frac{\Delta_n}{\mathcal{I}} \cdot 100 \quad , \tag{6}$$

где ∆n - наибольшее значение, полученное по формулам (4) и (5);

Д - нормирующее значение, mV, Ω , V, mA.

• Приборы считаются выдержавшими испытание, если погрешность, рассчитанная по формуле (6), соответствует значениям п.2.10.

10.3.9 Определение основной погрешности приборов по записи

Основную погрешность по записи определять на линиях отсчета диаграммной ленты, соответствующих примерно 10, 50 и 90 % от ширины поля регистрации следующим образом.

С помощью меры входного сигнала установить пишущее устройство ниже проверяемой линии. Медленно изменяя входной сигнал, совместить пишущее устройство с этой линией и определить значение входного сигнала $X=X_3$.

Затем установить пишущее устройство выше проверяемой линии. Медленно изменяя входной сигнал, совместить его с этой линией и определить значение входного сигнала X=X₄.

Определить наибольшее из двух значений Δ_3 и Δ_4 , рассчитанных по формулам:

$$\Delta_3 = \left(X_{HOM} - X_{HO}\right) \times \frac{L_{\partial}}{L_{HOM}} - X_3 + X_{HO} - \Delta_e - X_m,\tag{7}$$

$$\Delta_4 = \left(X_{HOM} - X_{HO}\right) \times \frac{L_{\partial}}{L_{HOM}} - X_4 + X_{HO} - \Delta_e - X_m, \tag{8}$$

где $X_{\text{ном}}$ – номинальное значение входного сигнала, соответствующее нижнему пределу измерения, mV, Ω , V, mA;

 L_{∂} , L_{HOM} — соответственно, действительная и номинальная ширина поля регистрации диаграммной ленты, mm;

2.600.019 PЭ

 X_3 , X_4 — значение входного сигнала на проверяемой линии диаграммной ленты при подходе пишущего устройства к этой линии со стороны, соответственно, возрастающих и убывающих значений, mV, Ω , V, mA;

 X_{HOM} , Δ_{ε} , X_m — то же, что и в формулах (3) и (4).

В формулах (7) и (8) принимается $L_{\text{д}}$ = $L_{\text{ном}}$, если отклонение между ними не превышает ±0,2 mm.

Значения X_{ном} для приборов с входным сигналом от термопар и термопреобразователей сопротивления берут соответственно по ГОСТ Р 8-585-2001 и ГОСТ 6651-94.

Значения $X_{\text{ном}}$ для приборов с входным сигналом по ГОСТ 26.011-80 рассчитываются по формуле:

$$XHOM = \mathcal{I}\frac{Y - YH}{YB - YH} + X_C \qquad , \tag{9}$$

где \mathcal{I} - нормирующее значение, mV, Ω , V, mA.;

У – числовое значение проверяемой отметки линии отсчета, %;

 Y_{e} , Y_{H} — числовое значение соответственно верхней и нижней линии отсчета диаграммной ленты, %;

 X_{o} – нижнее предельное значение входного сигнала, mV.

Основную приведенную погрешность по регистрации γ_p , в процентах, рассчитать по формуле:

$$g_p = \frac{\Delta}{\mathcal{I}} \times 100, \qquad 0020 \tag{10}$$

где Δ — наибольшее значение, полученное по формулам (7) и (8);

Д – нормирующее значение, mV, Ω , V, mA.

• Приборы считаются выдержавшими испытание, если погрешность, рассчитанная по формуле (10), соответствует значениям п.2.10.

10.3.10 Определение основной погрешности по преобразованию

Проводится не менее чем при пяти значениях выходного сигнала, интервал между которыми не должен превышать 30 % от диапазона изменения выходного сигнала, включая нижнее и верхнее предельные значения.

Погрешность определяется следующим образом.

С помощью меры входного сигнала довести значение выходного сигнала до равенства контролируемому значению с точностью ± 5 mV и определить значение входного сигнала $X=X_5$.

Рассчитать значение погрешности по формуле:

$$\Delta_5 = X_{HOM} - X_5 - \Delta_e - X_m,\tag{11}$$

где $X_{\text{ном}}$, Δ_{ε} , X_m — то же, что и в формулах (3) и (4);

 X_5 — значение входного сигнала, соответствующее контролируемому значению выходного сигнала, mV, Ω , mA,V;

Значение контролируемого выходного сигнала, U_k (mV), рассчитывается по формуле:

$$U_K = I_K \cdot R2 \tag{12}$$

где I_{κ} - значение контролируемого выходного тока, рассчитываемое по формуле (1) при $X=X_{\text{ном}}$, mA;

R2 — значение сопротивления резистора R2 на рисунке 7.1, Ω .; для сигнала с диапазоном 0-5 mA R2 равно (2000±2) Ω , 4-20 mA — (500±0,5) Ω ,.

Основную приведенную погрешность по преобразованию γ_{np} , в процентах, рассчитать по формуле:

$$g_{\Pi p} = \frac{\Delta_5}{\mathcal{I}} \times 100, \tag{13}$$

где D_5 – значение, полученное по формуле (11), mV, Ω , mA, V;

 \mathcal{I} – нормирующее значение, mV, Ω , mA, V.

• Приборы считаются выдержавшими испытание, если погрешность, рассчитанная по формуле (13), соответствует значениям п.2.10.

10.3.11 Определение погрешности прибора по сигнализации

Основную погрешность по сигнализации определить при трех значениях уставки следующим образом.

При проверке сигнального устройства МАЛО СУ1 (МНОГО СУ2) уводят уставку сигнализации СУ2 МНОГО (СУ1 МАЛО) к конечной (начальной) отметке шкалы.

Установить задание сигнального устройства СУ1 МАЛО (СУ2 МНОГО) на проверяемую отметку шкалы.

Указатель прибора установить с помощью меры входного сигнала выше (ниже) проверяемой отметки шкалы, чтобы светилась лампа Н1.

Медленно уменьшая (увеличивая) входной сигнал, добиться срабатывания сигнального устройства, при этом должна загореться лампа Н2 и погаснуть лампа Н1.

Определить значение входного сигнала X=X6 и рассчитать по формуле:

$$\Delta_6 = X_{HOM} - X_6 - \Delta_e - X_m, \tag{14}$$

 $X_{\text{ном}}$, Δ_{ε} , X_m — то же, что и в формулах (3) и (4);

 X_6 — значение входного сигнала в момент срабатывания сигнального устройства, mV, Ω , V, mA.

2.600.019 PЭ

Основную приведенную погрешность по сигнализации γ_c , в процентах, рассчитать по формуле:

$$g_{\mathbf{C}} = \frac{\Delta_{\mathbf{6}}}{\mathcal{D}} \times 100,\tag{15}$$

где D_6 – наибольшее из значений, рассчитанных по формуле (14), mV, Ω , V, mA; \mathcal{L} – нормирующее значение, mV, Ω , V, mA.

• Приборы считаются выдержавшими испытание, если погрешность, рассчитанная по формуле (15), соответствует значениям п.2.10.

10.3.12 Определение вариации показаний и регистрации

Вариацию показаний, регистрации определить одновременно с определением основной погрешности приборов по этим функциям по формуле:

$$\boldsymbol{\varepsilon} = \left| \mathbf{X}_{i} - \mathbf{X}_{i+1} \right| , \tag{16}$$

где Xi - то же , что X_1 , X_3 в формулах (3) и (7);

 X_{i+1} – то же, что и X_2 , X_4 в формулах (4) и (8).

Вариацию показаний, выраженную в процентах от нормирующего значения, вычислить по формуле:

$$g_{\mathbf{g}} = \frac{\mathbf{g}}{\mathbf{\Pi}} \cdot 100 \quad , \tag{17}$$

где \mathcal{I} - нормирующее значение, mV, Ω , V, mA.

• Приборы считаются выдержавшими испытание, если значение, рассчитанное по формуле (17) соответствует требованиям п 2.11.

10.3.13 Проверка качества записи

Проводить одновременно с проверкой быстродействия прибора следующим образом

Изменить скачком входной сигнал до верхнего предельного значения, переведя переключатель S2 из состояния 2 в состояние 1.

Выдержать прибор в течение времени, достаточного для продвижения диаграммной ленты на расстояние не менее 1mm, и изменить входной сигнал до исходного значения. Эти переключения повторить пять раз.

Линия записи должна быть без подтеков.

• Приборы считаются выдержавшими испытание, если при скачкообразном изменении входного сигнала от нижнего до верхнего предельного значения на линии записи не более трех разрывов. Длина каждого из разрывов не превышает 20 % от ширины поля записи.

10.3.14 Проверка выброса пишущего устройства

Выброс пишущего устройства проверить путем измерения наибольшего отклонения линии записи на диаграммной ленте от установившегося значения при скачкообразном изменении входного сигнала.

Проверку проводить как при больших, так и при малых разбалансах входного сигнала не менее чем на трех отметках диаграммной ленты, соответствующих примерно 30, 60 и 90 % ширины ленты, как в сторону возрастающих, так и в сторону убывающих значений входного сигнала.

• Приборы считаются выдержавшими испытание, если измеренное значение выброса не превышает значения по п.2.15.

10.3.15. Проверка отклонения скорости перемещений диаграммной ленты от номинального значения

Проверка проводится при напряжении питания переменного тока $(220^{+22}/-33)$, частотой (50 ± 1) Hz следующим образом.

Подключить прибор по схеме приложения 7.

Подключить синхронные электрические часы к цепи питания прибора, нанести карандашом вертикальную отметку на кронштейне лентопротяжного механизма и несколько правее отметку на диаграммной ленте.

Подать на прибор напряжение питания и, как только нанесенные отметки совпадут, включить электрические часы.

Выключить лентопротяжный механизм по истечении времени, вычисленного по формуле:

$$t = \frac{Lp}{V} \qquad , \tag{18}$$

где t - время испытаний, h;

Lp - выбранная длина отрезка диаграммной ленты, не менее 500 mm; *V* - номинальная скорость перемещения диаграммной ленты, mm/h.

На уровне отметки на кронштейне нанести отметку на диаграммной ленте.

Погрешность скорости перемещения диаграммной ленты вычислить по формуле:

$$g_{\mathcal{I}} = \left(1 - \frac{L_{\mathcal{I}}}{L_{p}}\right) \cdot 100 \quad , \tag{19}$$

где $g_{\mathcal{I}}$ - погрешность скорости перемещения диаграммной ленты, %;

 $L_{\mathcal{I}}$ - действительная длина отрезка между двумя отметками нанесенными на диаграммной ленте, mm;

 L_{p} - то же, что и в формуле (18).

Вместо синхронных часов допускается использование частотомерахронометра (например, Ф5080), работающего в режиме счета импульсов напряжения питающей сети. 180000 импульсов соответствуют одному часу по синхронным часам.

• Приборы считаются выдержавшими испытание, если погрешность, рассчитанная по формуле (19) не превышает значения по п 2.16.

10.3.16 Определение зоны возврата по сигнализации

Определяется одновременно с определением основной погрешности по сигнализации.

При уменьшении (увеличении) входного сигнала определить его значение $X=X_8$ в момент отпускания сигнального устройства.

Зону возврата по сигнализации, в процентах, рассчитать по формуле:

$$b = \frac{\left|X_6 - X_8\right|}{\mathcal{I}} \times 100,\tag{20}$$

где X_6 – то же, что в формуле (14);

 X_8 – значение входного сигнала в момент погасания светодиодов нижнего (верхнего) предела; отпускания сигнального устройства, mV, Ω , mA, V;

 \mathcal{I} – нормирующее значение, mV, Ω , V, mA..

• Приборы считаются выдержавшими испытание, если зона возврата, вычисленная по формуле (20), не превышает допустимых значений по п 2.11.

10.3.17 Проверка выходных сигналов и номинальной статической характеристики преобразования

Проверку выходных сигналов и номинальной статической характеристики преобразования проводить одновременно с определением основной погрешности по преобразованию путем контроля соответствия значений выходного сигнала заданным значениям входного сигнала.

Выходные сигналы по каналу преобразования должны соответствовать 0-5 или 4-20 mA по ГОСТ 26.011-80.

• Приборы считаются выдержавшими испытание, если погрешность преобразования не превышает допустимых значений по п. 2.10.

10.4 Оформление результатов поверки

При положительных результатах поверки приборов поверитель ставит свое клеймо в паспорте. При отрицательных результатах поверки приборов клеймо должно быть погашено, а в паспорте делается отметка о непригодности поверенных приборов. Приборы должны быть изъяты из эксплуатации.

11 ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ И МЕТОДЫ ИХ УСТРАНЕНИЯ *Таблица* 6

Неисправность	Вероятная причина	Метод устранения
Питание на прибор подано, а прибор не работает	Перегорела вставка плавкая.	Вынуть из запчастей вставку плавкую на необходимый ток и вставить в держатель.
	Плохой контакт соединительного разъема. Неисправен выключатель питания	Проверить надежность контактов в разъеме. Заменить выключатель на исправный
Нет записи на диа- граммной ленте	Нет чернил в пишущем устройстве	Заменить фломастер
Исполнительный двигатель вращается, а указатель стоит на месте, но не на упоре	Оборван тросик. Не включен переключатель исполнительного механизма на боковой панели прибора	Вынуть из запчастей тросик и заменить оборванный. Установить переключатель в положение включено

12 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

12.1 Уход за реохордом

При правильной эксплуатации приборов реохорды не требуют повседневного ухода и работают надежно длительное время. Но длительная непрерывная работа прибора, связанная с частым перемещением контакта по реохорду, может привести к засорению контактной поверхности реохорда продуктами износа контакта; засорение может произойти также осаждением различных микрочастиц из атмосферной среды.

Засорение реохорда приводит к частичной потере чувствительности и к неустойчивости показаний прибора.

Поэтому периодически, не реже одного раза в квартал, а также после длительного хранения (более трех месяцев), по мере необходимости чистить реохорд.

Для чистки реохорда проделать следующие операции: выключить прибор, выдвинуть шасси из корпуса, снять лентопротяжный механизм; кисточкой, смоченной в очищенном бензине или спирте, тщательно промыть спирали реохорда и контакты. После чего насухо протереть их чистой замшей.

Не протирать спирали реохорда бумагой или тряпкой!

Для замены изношенных контактов новыми проделать все предварительные операции, изложенные в предыдущем пункте. Затем снять пружину с изношенными контактами, отвернув два винта, крепящие пружину к каретке. Установить новую пружину, находящуюся в коробке с запчастями и завернуть винты.

После установки пружины с новыми контактами проверить основную погрешность показаний и вариацию по пп.10.3.8. и 10.3.12.

При необходимости отрегулировать в соответствии с п.12.7.

12.2 Уход за устройством записи

Фломастерные пишущие узлы заправке не подлежат. Их необходимо заменять новыми.

Для этого необходимо отключить прибор, открыть лентопротяжный механизм, снять фломастерный пишущий узел со штырьков. Установить новый в обратной последовательности.

ВНИМАНИЕ! Фломастеры можно приобрести на заводе-изготовителе приборов.

12.3 Замена диаграммной ленты

Для замены диаграммной ленты необходимо снять приемную гильзу 4 (рис.10), для чего осадить ее вниз и вывести верхнюю ось из зацепления с кронштейном. Удалить отработанную ленту, установить приемную гильзу на кронштейн и выполнить работы по установке диаграммной ленты в соответствии с п. 9.2.

12.4 Замена тросика

Для установки нового тросика в приборе проделать следующее.

Сделать на конце тросика петлю, надеть ее на палец шкива и пропустить тросик через паз шкива.

Сделать один виток тросика вокруг шкива; надеть тросик на четыре ролика.

Закрепить тросик на шкиве следующим образом. Провести тросик во вторую прорезь шкива и отверстие в винте, завязать на конце узелок, натянуть тросик, вращая отверткой; закрепить тросик на каретке указателя.

Отрегулировать прибор в соответствии с подразделом 12.7.

12. 5 Замена исполнительного двигателя

Замену двигателя производить в следующем порядке:

- выдвинуть шасси из корпуса;
- отпаять провода двигателя от платы, снять скобу, крепящую двигатель, и вынуть его из прибора;
- установить новый двигатель, закрепить скобой и подать его концы к соответствующим клеммам платы.

После этого при необходимости произвести настройку прибора в соответствии с п.12.7.

12.6 Замена силового трансформатора

Для замены трансформатора отвернуть винты, крепящие заднюю стенку корпуса, вынуть ее и, отпаяв концы жгута, идущие к силовому трансформатору, отвернуть винты, крепящие трансформатор. Затем вынуть силовой трансформатор и поставить новый.

12.7 Регулирование и настройка приборов

Если характер успокоения и вариация приборов не удовлетворяют предъявленным требованиям, то провести их подрегулировку следующим образом.

- повернуть отверткой оси резисторов R79 ОБР.СВЯЗЬ и R56 ЧУВСТВ. (рисунок1) против часовой стрелки до упора;
- подавая скачкообразно входной сигнал, добиться, поворачивая ось резистора ЧУВСТВ, 3-6 полуколебаний указателя или дрожания с амплитудой не более 0,5-1 mm;
- поворачивая ось резистора ОБР.СВЯЗЪ, добиться, чтобы характер успокоения и вариации соответствовали техническим требованиям.

Если основная погрешность по показаниям превышает допустимого значения, то, включив прибор по схеме приложения 7, необходимо убедиться в том, что не сбит указатель. Для этого необходимо проверить заходы указателя за начальную и конечную отметки шкалы, которые должны быть примерно одинаковыми и не менее 1 mm.

Если заходы разные, то провести подрегулировку положения указателя следующим образом:

- подать на вход прибора сигнал, соответствующий начальной отметке шкалы; после остановки указателя ослабить винты, крепящие указатель, и установить его на начальной отметке шкалы;
- закрепить указатель на каретке и подать на вход прибора сигнал, соответствующий конечной отметке шкалы;
- оценить погрешность; если данная регулировка не позволила обеспечить нормируемую, то необходимо аналогичным образом, подавая сигнал на вход прибора, произвести регулировку основной погрешности, изменяя сопротивление резисторов R18 и R50 (рисунок 1). Причем резистор R18 регулирует показания прибора на начальной отметке шкалы, а R50 на конечной отметке.

После подрегулировки произвести проверку основной погрешности по показаниям на всех числовых отметках шкалы.

Если основная погрешность прибора по записи превышает нормируемую величину, необходимо произвести подрегулировку устройства записи относительно диаграммной ленты.

Регулировка проводится следующим образом:

включить прибор;

- установить указатель на числовую отметку шкалы, где погрешность записи наибольшая;
- на каретке 4 ослабить винты (рисунок 7), крепящие держатель устройства записи;
- установить фломастерный пишущий узел на соответствующую числовую отметку диаграммной ленты.

Если настройка «электронных упоров» не удовлетворяет предъявляемым требованиям (заходы указателя менее 1 mm, двигатель работает при сигнале, выходящем за диапазон измерений прибора), следует резисторами R38 и R39 отрегулировать настройку «электронных упоров».

Приборы поставляются со скоростью перемещения диаграммной ленты 80 mm/h. При необходимости установки скорости из ряда: 20, 40, 160, 320, 640, 1280, 2560 mm/h- следует стопорящими винтами Р и С ввести в зацепление зубчатые колеса К и Л согласно рисунка 11.

При изменении скорости перемещения диаграммной ленты замер скорости производить после наработки редуктора в течение 20 min с целью выборки люфта.

13 ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

Приборы транспортируются всеми видами транспорта в крытых транспортных средствах (авиатранспортом — в отапливаемых герметизированных отсеках) в соответствии с правилами перевозки грузов, действующими на соответствующем виде транспорта.

Расстановка и крепление ящиков с приборами должны исключать возможность их смещения и ударов друг о друга и о стенки транспорта.

Условия транспортирования и хранения приборов обыкновенного исполнения должны соответствовать условиям 5 или 3 (морским путем) по ГОСТ 15150-69.

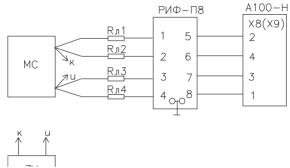
После распаковки приборы поместить не менее чем на сутки в сухое отапливаемое помещение, чтобы они прогрелись и просохли. Воздух в помещении не должен содержать пыли, примесей агрессивных паров и газов, вызывающих коррозию. Только после этого приборы могут быть введены в эксплуатацию.

14 УКАЗАНИЯ ПО ЭКСПЛУАТАЦИИ

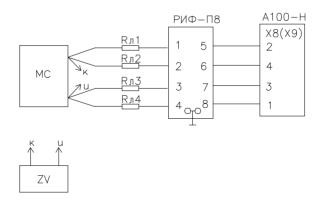
Приборы должны эксплуатироваться при температуре и влажности, указанных в разделе 1.

Воздух в помещении не должен содержать пыли, примесей агрессивных паров и газов.

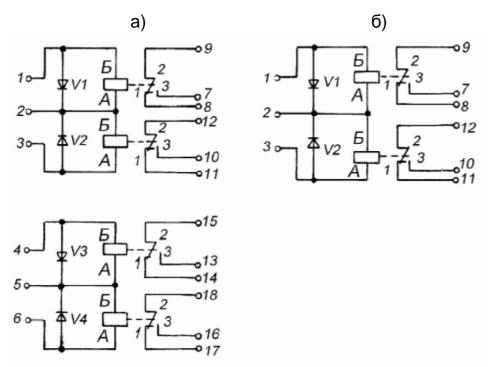
При нормальной эксплуатации прибора следует периодически (не раже трех раз в год) производить чистку и смазку подвижных частей прибора. Отсутствие смазки может привести к поломке прибора.


Для смазки применять приборное масло ГОСТ 1806-76 и ФИОЛ-2.

Смазывать необходимо шарикоподшипники подвижной системы прибора, оси зубчатых колес редуктора подвижной системы и лентопротяжного механизма.


При эксплуатации допускается работа подвижной системы прибор на упоре не более 3 часов в сутки.

ВНИМАНИЕ! Ваш прибор в комплекте с барьерами искрозащиты энергетическими РИФ-П8 обеспечивает уровень взрывозащиты «ia IIC».


Подключение к прибору термопреобразователей сопротивления осуществлять по приведенной ниже схеме:

При поверке прибора по пп.10.3.2–10.3.13; 10.3.15; 10.3.16 компаратор подключать по приведенной ниже схеме:

При проверке прибора необходимо подключать тот барьер РИФ-П8, номер которого указан в паспорте прибора.

Рисунок 2. Схема электрическая принципиальная платы сигнализации: а) для двухканального прибора;

б) для одноканального прибора

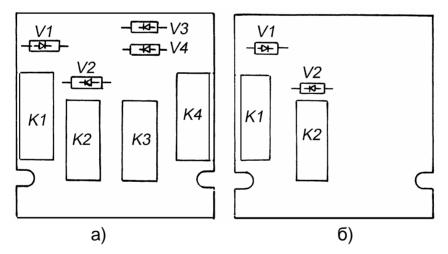
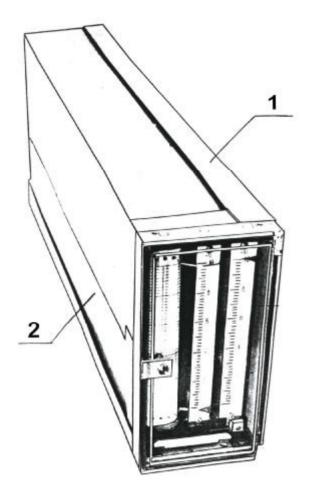



Рисунок 2а. Расположение элементов на плате сигнализации:

а) - для двухканального прибора; б) - для одноканального прибора

Рисунок 5. Внешний вид прибора: 1 – обойма; 2 – корпус

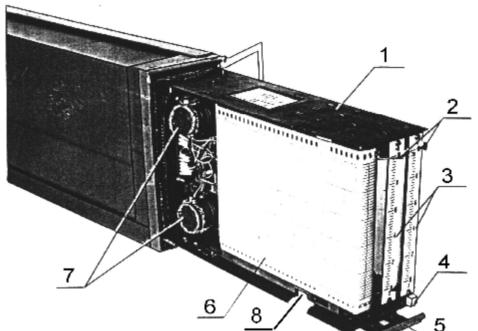


Рисунок 6. Вид прибора с выдвинутым из корпуса шасси:
1 - шасси; 2 - капилляры и указатели; 3 - шкалы; 4 - индикатор; 5 - ручка;
6 - лентопротяжный механизм; 7 - исполнительные двигатели;
8 – защелка лентопротяжного механизма

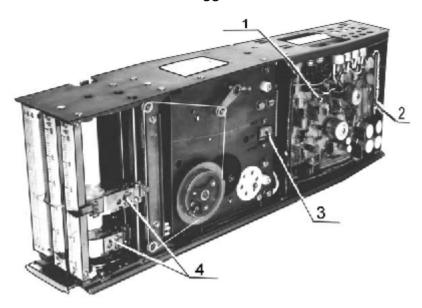
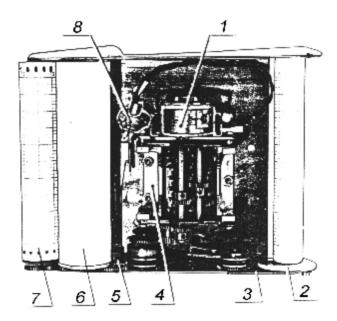



Рисунок 7. Шасси двухканального прибора:
1 - платы печатного монтажа; 2 - штепсельные разъемы;
3 - выключатель исполнительного двигателя;
4 - каретки с указателями и устройствами записи

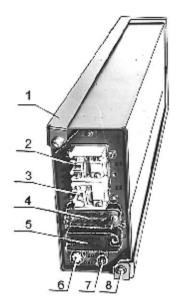


Рисунок 8. Лентопротяжный механизм:

1 - электродвигатель; 2 - приемная гильза; 3 - кронштейн; 4 - редуктор;

5 - защелка, 6 - подающая гильза;

7 - ведущий барабан ; 8 - вилка электродвигателя

Рисунок 9. Прибор без крышки:

1-обойма; 2 - колодка подключения первичных преобразователей первого канала; 3 - колодка подключения первичных преобразователей второго канала; 4 - колодка подключения питания силовых цепей, цепей преобразования и сигнализации первого канала; 5 - колодка подключения цепей преобразования и сигнализации второго канала; 6 - предохранитель; 7 - зажим ЗЕМЛЯ; 6 - крепежные винты

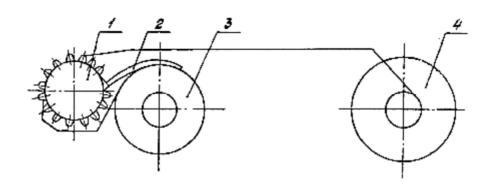
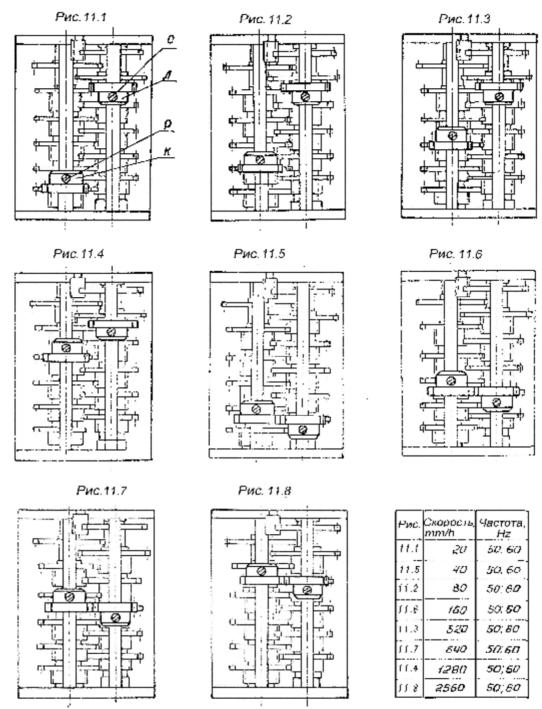



Рисунок 10. Схема заправки диаграммной ленты: 1 - ведущий барабан; 2 - прижим; 3 - подающая гильза; 4 — приемная гильза

Рисунок 11. Схемы кинематические редуктора лентопротяжного механизма:

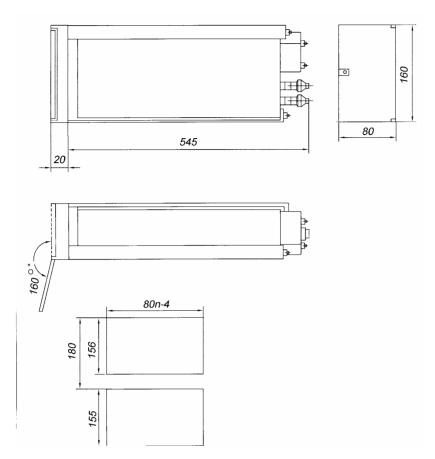
 $\mathsf{K},\,\mathsf{\Pi}\,$ - зубчатые колеса; $\mathsf{P},\,\mathsf{C}$ - стопорящие винты

2.600.019 P9 36

Приложение 1 РАСШИФРОВКА ОБОЗНАЧЕНИЯ МОДИФИКАЦИИ ПРИБОРОВ А100-Н

А		В			С	=0		D		
Канал	I	Кана.	л II							
		1		Г	Ī				г	1
Цифровое						Цифровое				
обозначение	0	1	2	3		обозначение	1	2	3	4
Тип датчика,	Канал	TXA,	TCM,	ΤΠΡ,		Напряжение	,			
входной	отсутст-	TXK,	ТСП	0-		V	220;	220;	240;	240;
сигнал	вует	ТПП		20,		Частота,	50	60	50	60
				0-		Hz				
				50,						
				0-						
				100						
				mV						

Приложение 2 ДИАПАЗОНЫ ИЗМЕРЕНИЙ


преоб	ервичный Пределы из реобразо- ний, °С атель		•	Первичный преобразова- тель		Пределы измере- ний, °C				
Тип	HCX	нижний	верхний	Тип	HCX	нижний	верхний			
1	2	2	4	1	2	3	4			
		-50	+50			0	800			
		-50	+100	TXA	TXA	K	0	900		
		-50	+150			0	1100			
TXK L	L	-50	+200						0	1300
	0	100			200	600				
		0	200			200	1200			
		0	300			400	900			
		0	400			600	1100			
		0	600			700	1300			
		0	800			0	1300			
		200	600	ТПП	S	0	1600			
		200	800			0	1700			
TXA	K	0	300			500	1300			
1701		0	400				1000	1700		
		0	600							

продолжение приложения 2

<u> </u>	жение прил			1	2	2	1
1	2	2	4		2	3	4
ТПР	В	300	1000	ТСП	100∏	0	400
		300	1600	-		0	500
		1000	1600	-		0	600
		1000	1800	-		0	800
ТСП	10∏	0	300	-		200	1000
		0	500			-200	600
ТСП	50∏	-7 0	-180			-200	-7 0
		-120	+30			0	+50
		-200	+50			-50	0
		-200	-70			-50	+50
		-50	100			-50	+100
		0	50	TCM	500M	0	50
		0	100			0	100
		0	150			0	150
		0	200			0	180
		0	300			0	200
		0	400			50	100
		0	500	TCM	100M	-50	0
		0	600			-50	+50
		0	800			-50	+100
		0	1000			-25	+25
		200	600			0	10
ТСП	100∏	-120	+30			0	25
		-70	+180	=		0	50
		-90	+25	-		0	100
		-25	+50	-		0	150
		0	50	-		0	200
		0	100	-		0	100
		0	150		_		
		0	200	-			
		0	300	-			
Диапазоны изменения сигналов постоянного напряжения и тока				ока			
Напря	020 mV		10 заявке		5 mA	Шкалы по	
жение	050 mV 0100		о заявке бителей				
НСХ	mV		OOKOG VODO				

HCX – номинальная статическая характеристика преобразования. Диапазоны изменения входного сигнала соответствуют: для термопар по ГОСТ Р 8.585-2001; для термопреобразователей сопротивления по ГОСТ 6651-94

Приложение 3 ГАБАРИТНЫЕ РАЗМЕРЫ

Вырез в щите: установки (n - количество приборов)

* Размер для справок

Приложение 4
ОБМОТОЧНЫЕ ДАННЫЕ СИЛОВОГО ТРАНСФОРМАТОРА (Ш20х30)

Номер об- мотки	Номера выводов	Диаметр провода	Число витков	Напряжение хо- лостого хода, V
1	8; 9	0,2	1600	220
Е	3	_	_	экран
II	10; 11	0,2	193	26,6±1,3
III	12; 13; 14	0,28	153x2 (отвод от 153)	(21±1,1)x2
IV	5; 6, 7	0,28	153x2 (отвод от 153)	23,1±1,15

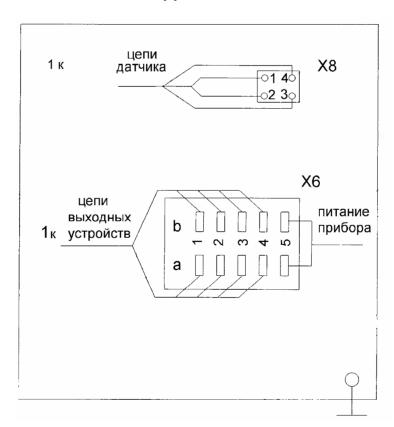
Приложение 5 ПЕРЕЧЕНЬ ЭЛЕМЕНТОВ К СХЕМАМ ЭЛЕКТРИЧЕСКИМ ПРИНЦИПИАЛЬНЫМ

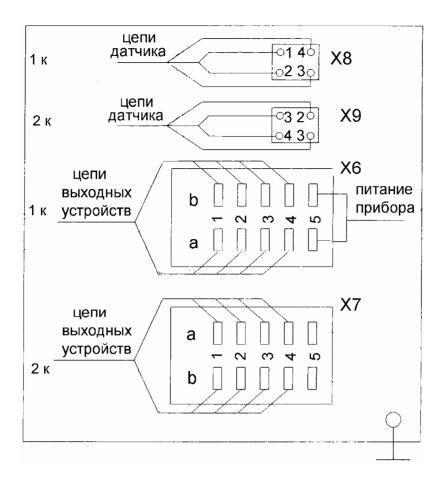
Обозначение	Наименование	Кол
V1	Индикатор единичный АЛ307 БМ	1
T1	Трансформатор	1
C1,C2	Конденсатор К10-7В-Н90-0,068µF ⁺⁸⁰ -20%	2
F1	Вставка плавкая ВП1-1 0,5 A 250 V	1
X1, X3–X5	Розетка МРН14-1	4
X2	Вилка РШ2НМ-1-5	1
	Розетка РГ1Н-1-1	1
X6	Вилка РП14-10Л	1
X7	Розетка РП14-10Л	1
X8,X9	Колодка	2
M1, M2	Электродвигатель GDQM-14000.7024	2
M3	Электродвигатель ДСО32-0,1-0,375	1
Q1	Переключатель ПДМ2-1	1
R1, R2	Реохорд	2
A1, A2	Плата смонтированная канала измерения	2
	Микросхемы	
D2	КР544УД1А	2
D3	KP142 EH12A	2
D4	KP142 EH18A	2
D5	КР140 УД17А	2
D7-D13, D15-D17	КР544 УД1А	20

Обозначение	Наименование	Кол
	Резисторы	
R1, R32	C2-29B-0,125-124 Ω±0,5-1,0-C	4
R2	C2-29B-0,125-2,8 kΩ±0,25 %-1,0-C	2
R3	C2-29B-0,125-2,91 kΩ±0,25 %-1,0-C	2
R4, R5, R31, R93	C2-29B-0,125-4,81 kΩ±0,25 %-1,0-C	8
R6, R24	CΠ5-35Б-10 kΩ	4
R7, R8	C2-29B-0,125-32,8 kΩ±0,25 %-1,0-C	4
R9*	C2-29B-0,125-100 kΩ±0,25 %-1,0-C	2
R9**	C2-29B-0,25-499 kΩ±0,25 %-1,0-C	2
R10	C2-29B-0,125-2658 kΩ±0,25 %-1,0-C	2
R11	C2-33H-0,125-24 kΩ±5 %-A-K	2
R12	C2-29B-0,125-10,0 Ω±0,5 %-1,0-A	2
R13	C2-29B-0,125-249 Ω±0,25 %-1,0-C	2
R15	C2-29B-0,125-10,4 kΩ±0,5 %-1,0-C	2
R16, R48, R49	C2-33H-0,125-5,6 kΩ±10 %-A-K	6
R17	C2-29B-0,125-100 kΩ±0,25 %-1,0-C	2
R18, R50	CΠ3-39A-10 kΩ±10 %	4
R19, R22	C2-29B-0,25-243 Ω±1,0 %-1,0-A	4
R20, R21	C2-29B-0,125-2,61 kΩ±1,0 %-1,0-A	4
R23	C2-29B-0,125-649 kΩ±0,5 %-1,0-A	2
R26, R41, R42, R68, R69	C2-33H-0,125-1,0 kΩ±5 %-A	10
R27, R47, R61	C2-33H-0,125-15 kΩ±5 %-A	6
R28	C2-29B-0,125-357 Ω±0,25 %-1,0-A	2
R29	C2-29B-0,125-274 Ω±0,25 %-1,0-C	2
R30	C2-29B-0,125-681 Ω±0,25 %-1,0-C	2
R33–R35	C2-29B-0,125-36,1 kΩ±0,25 %-1,0-C	6
R36	C2-29B-0,125-12 Ω±1,0 %-1,0-Б	2
R37	C2-29B-0,125-10 kΩ±1,0 %-1,0-Б	2
R38, R39	CΠ3-39A-1 kΩ±10 %	4
R40	C2-29B-0,125-7,5 kΩ±0,25 %-1,0-C	2
R44	CΠ3-39A-4,7 kΩ±10 %	2
R46, R54, R70, R71, R77	C2-33H-0,125-10 kΩ±5 %-A	10

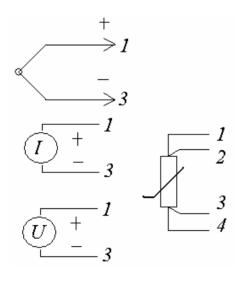
^{*} Для 50М,50П, 100М,100П ** Для остальных групп

Обозначение	Наименование	Кол
R58, R60	C2-33H-0,125-2,0 kΩ±5 %-A	4
R51	C2-33H-0,125-8,2 kΩ±5 %-A	2
R52, R53	CΠ4-1a-0,5-6,8 kΩ±20 %-A-BC-2-12	4
R55, R66, R67	C2-33H-0,125-2,2 kΩ±5 %-A-K	6
R56	CΠ4-1a-0,5-33 kΩ±20 %-A-BC-2-12	2
R57, R59	C2-33H-0,125-1,2 MΩ±5 %-A	4
R62	C2-33H-0,25-2,7 MΩ±5 %-A	2
R63	C2-33H-0,125-3,6 kΩ±5 %-A	2
R64, R65	C2-33H-0,25-5,1 MΩ±5 %-A	4
R72R75	C2-29B-0,125-12,1 Ω±1,0 %-1,0-Б	8
R76	C2-33H-0,125-33 kΩ±5 %-A	2
R78	C2-33H-0,125-270 Ω±5 %-A	2
R79	CΠ4-1a-0,5-680 Ω±20 %-A-BC-2-12	2
R81	C2-33H-0,25-3,6 kΩ±5 %-A-Д	2
R82	C2-29B-0,125-23,7 Ω±1,0 %-1,0-A	2
R83	C2-29B-0,125-33,2 Ω±1,0 %-1,0-A	2
R86, R87	C2-29B-0,125-59,7 kΩ±0,25 %-1,0-C	4
R88	C2-29B-0,125-30,1 kΩ±0,5 %-1,0-C	2
R89	C2-29B-0,125-60,4 kΩ±0,5 %-1,0-A	2
R90, R92	C2-29B-0,125-2,0 kΩ±1,0 %-1,0-A	4
	Диоды, стабилитроны	
V1-V6, V26, V27	Диод КД208А	16
V7	Стабилитрон КС191Т	2
V10-V12, V15, V16, V21, V25	Диод КД522Б	14
	Транзисторы	
V8, V14	KT972A	4
V9	КТ503Б	2
V13, V17	КТ3102БМ	4
V18	KT3107A	2
V19, V23	КТ816Г	4
V20, V24	KT817Г	4
V22, V28, V29	KT3102AM	6


2.600.019 PЭ


продолжение приложения 5

Обозначение	Наименование	Кол
	Конденсаторы	
C1, C2, C4, C5	K50-35-40B-220 μF	8
C3, C6	K73-11a-160 V-1,0 μF±20 %	4
C7	K73-9-100 V-3300 pF±10 %	2
C8, C9, C12, C13	K10-7B-H90-0,068 μF+80/-20 %	8
C10, C11, C14, C15	K50-35-40B-47 μF	8
C16, C18, C19	K10-7B-H90-0,033 μF+80/-20 %	6
C17	K10-7B-H90-3300 pF+80/-20 %	2
C20, C21	K10-7B-H90-0,015 μF+80/-20 %	4
C22	K10-7B-H90-0,047 μF+80/-20 %	2
X3 X16	Перемычка	14
A3	Плата смонтированная сигнализации	1
V1V4	Диод КД522Б	4
K1K4	Реле РЭК32-1	4


42

Приложение 6 СХЕМЫ ВНЕШНИХ ПОДКЛЮЧЕНИЙ ПРИБОРА А100-Н

Подключение выходных устройств X6, X7

16					
Контакты		Цепь			
		цень			
X6	<i>X</i> 7				
канал 1	канал 2				
2b	2a	Зам	иыкающий		_
3b	3a	Обі	ций	МАЛО	411
4b	4a	Pas	Размыкающий/		13aı
2a	2b	Замыкающий			али
3a	3b	Общий		MHO-	сигнализация
4a	4b	Рази	иыкающий	ГО	ਹੋ
5a,	_	Питание прибор		а	
5b					
1b	1a	+	Преобразов	вание 0	-5
		или 4-20 mA			

Приложение 7

ЭЛЕКТРИЧЕСКАЯ СХЕМА ПОДКЛЮЧЕНИЙ ПОВЕРОЧНЫХ СРЕДСТВ ДЛЯ ОПРЕДЕЛЕНИЯ ПОГРЕШНОСТИ ПРИБОРОВ A100-H

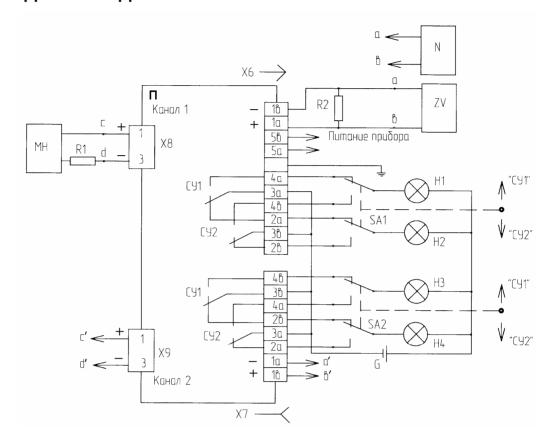
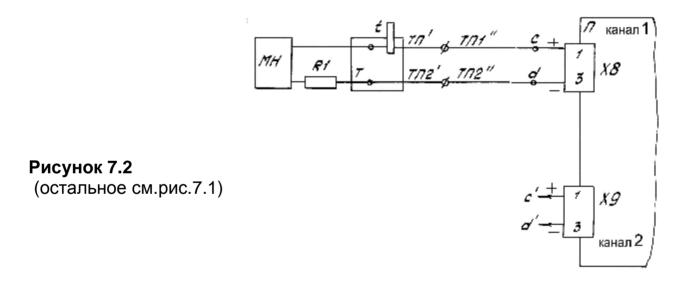
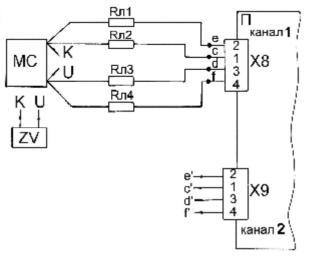



Рисунок 7.1


Наименование	Кол.
Проверяемый прибор	1
1	
20, 0-50, 0-100 mV)	
Компаратор	1
Цифровой вольтметр	1
Батарея U=6 V	1
Резистор (200 Ω)	1
Резистор	1
Сигнальные устройства	4
Ключ	2
Лампы (индикаторы)	4
U=6,3 V	
Осциллограф	1
	Проверяемый прибор (входной сигнал ТПР, 0-20, 0-50, 0-100 mV) Компаратор Цифровой вольтметр Батарея U=6 V Резистор (200 Ω) Резистор Сигнальные устройства Ключ Лампы (индикаторы) U=6,3 V

Примечание - При поверке второго канала цифровой вольтметр ZV подключать к точкам аҫ bҫ компаратор МН – к точкам с′ - d′

Обозначение	Наименование	Кол	
П	Проверяемый прибор (вх. сигнал ТХА, ТХК, ТПП)	1	
R1	Резистор	1	
MH	Компаратор	1	
Т	Термостат	1	
t	Термометр	1	
ΤΠ1′, ΤΠ1″	Термоэлектродные провода одного металла	2	
ТП2′, ТП2″	Термоэлектродные провода другого металла	2	
Thursday, Thu Tacanya amanaga yayata Tamayyyayama MH Tadyitia			

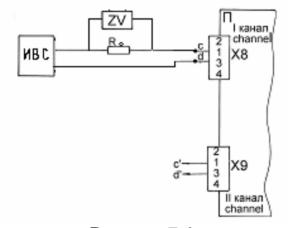

Примечание - При поверке второго канала потенциометр МН подключать к точкам с′ - d′ ¢

Рисунок 7.3 (остальное см. рис.7.1)

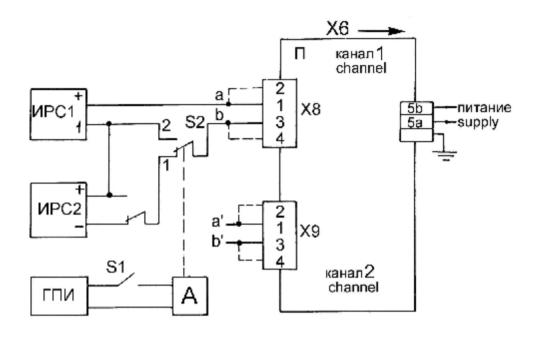
Обозначение	Наименование	Кол.
П	Проверяемый	1
	прибор(вх. сиг-	
	нал	
	от термопреоб-	
	разователей со-	
	противления)	
Rл1- Rл4	Резисторы	1
	$(2,5\pm0,1)\Omega$	
ZV	Цифровой вольт-	1
	метр	
MC	Магазин сопро-	1
	тивлений	
	_	_

Примечание - При поверке канала 2 магазин сопротивления МС под-ключать к точкам $e \ c \ d \ f \ c$

Рисунок 7.4 (остальное см. рис.7.1)

Обозначение	Наименование	Кол.
П	Проверяемый	1
	прибор(вх. сиг-	
	нал 0-5,	
	4-20 mA)	
Ro	Образцовая ка-	1
	тушка (100Ω)	
ZV	Цифровой	1
	вольтметр	
ИВС	Блок питания	1

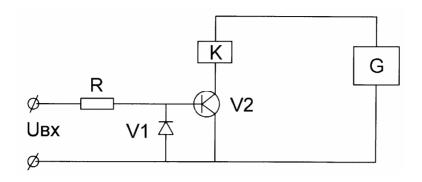
Примечания


1 При поверке канала ІІ блок питания ИВС подключать к точкам с с d с 2 Значение тока, в тА, вычислить по формуле I=U/Ro, где U -показания вольтметра ZV в

где U -показания вольтметра ZV в mA; Ro - 100 Ω .

Приложение 8

47


СХЕМА ЭЛЕКТРИЧЕСКАЯ ПРИНЦИПИАЛЬНАЯ ДЛЯ ПРОВЕРКИ БЫСТРОДЕЙСТВИЯ

Обозначение	Наименование	Кол.
П	Проверяемый прибор	1
ИРС1, ИРС2	Источник регулируемого сигнала	2
ГПИ	Генератор прямоугольных импульсов	1
S1, S2	Ключ	2
Α	См. приложение 9	1

Примечание - При поверке канала II ИРС1, ИРС2 подключать к точкам a¢, b¢ ИРС1, ИРС2 — это магазины сопротивления (для термометров сопротивления) или компаратор (для термопар и сигналов напряжения). Штриховыми линями показаны соединения для проверки термометров сопротивления

Приложение 9 СХЕМА ЭЛЕКТРИЧЕСКАЯ ПРИНЦИПИАЛЬНАЯ УЗЛА «А»

Обозначение	Наименование	Кол.
R	Резистор С2-23-5,1 kΩ	1
V1	Диод КД 102А	1
V2	Транзистор КТ 102А	1
K	Реле РЭК-32-1	1
G	Источник питания постоянного тока Б5-29	1

Для заметок

Для заметок